Do you want to publish a course? Click here

Ram pressure stripping and the formation of cold fronts

54   0   0.0 ( 0 )
 Added by Sebastian Heinz
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chandra and XMM-Newton observations of many clusters reveal sharp discontinuities in the surface brightness, which, unlike shocks, have lower gas temperature on the X-ray brighter side of the discontinuity. For that reason these features are called ``cold fronts. It is believed that some cold fronts are formed when a subcluster merges with another cluster and the ram pressure of gas flowing outside the subcluster gives the contact discontinuity the characteristic curved shape. While some edges may not arise directly from mergers (e.g., A496, Dupke & White, 2003), this paper focuses on those which arise as contact discontinuities between a merging subcluster and the ambient cluster gas. We argue that the flow of gas past the merging subcluster induces slow motions inside the cloud. These motions transport gas from the central parts of the subcluster towards the interface. Since in a typical cluster or group (even an isothermal one) the entropy of the gas in the central regions is significantly lower than in the outer regions, the transport of the low entropy gas towards the interface and the associated adiabatic expansion makes the gas temperature immediately inside the interface lower than in any other place in the system, thus enhancing the temperature jump across the interface and making the ``tip of the contact discontinuity cool. We illustrate this picture with the XMM-Newton gas temperature map of the A3667 cluster.



rate research

Read More

124 - P. Jachym , J. Koppen , J. Palous 2009
Ram pressure stripping of galaxies in clusters can yield gas deficient disks. Previous numerical simulations based on various approaches suggested that, except for near edge-on disk orientations, the amount of stripping depends very little on the inclination angle. Following our previous study of face-on stripping, we extend the set of parameters with the disk tilt angle and explore in detail the effects of the ram pressure on the interstellar content (ISM) of tilted galaxies that orbit in various environments of clusters, with compact or extended distributions of the intra-cluster medium (ICM). We further study how results of numerical simulations could be estimated analytically. A grid of numerical simulations with varying parameters is produced using the tree/SPH code GADGET with a modified method for calculating the ISM-ICM interaction. These SPH calculations extend the set of existing results obtained from different codes using various numerical techniques. The simulations confirm the general trend of less stripping at orientations close to edge-on. The dependence on the disk tilt angle is more pronounced for compact ICM distributions, however it almost vanishes for strong ram pressure pulses. Although various hydrodynamical effects are present in the ISM-ICM interaction, the main quantitative stripping results appear to be roughly consistent with a simple scenario of momentum transfer from the encountered ICM. This behavior can also be found in previous simulations. To reproduce the numerical results we propose a fitting formula depending on the disk tilt angle and on the column density of the encountered ICM. Such a dependence is superior to that on the peak ram pressure used in previous simple estimates.
(Abridged) We perform high resolution 2D hydrodynamical simulations of face-on ram pressure stripping (RPS) of disk galaxies to compile a comprehensive parameter study varying galaxy properties (mass, vertical structure of the gas disk) and covering a large range of ICM conditions, reaching from high density environments like in cluster centres to low density environments typical for cluster outskirts or groups. We find that the ICM-ISM interaction proceeds in three phases: firstly the instantaneous stripping phase, secondly the dynamic intermediate phase, thirdly the quasi-stable continuous viscous stripping phase. The stripping efficiency depends slightly on the Mach number of the flow, however, the main parameter is the ram pressure. The stripping efficiency does not depend on the vertical structure and thickness of the gas disk. We discuss uncertainties in the classic estimate of the stripping radius of citet{gunn72}, and adapt the estimate used by cite{mori00} for spherical galaxies, (comparison of central pressure with ram pressure). We find that the latter estimate predicts the radius and mass of the gas disk remaining at the end of the second phase very well, and better than the citet{gunn72} criterion. From our simulations we conclude that gas disks of galaxies in high density environments are heavily truncated or even completely stripped, but also the gas disks of galaxies in low density environments are disturbed by the flow and back-falling material, so that they should also be pre-processed.
We study galaxies undergoing ram pressure stripping in the Virgo cluster to examine whether we can identify any discernible trend in their star formation activity. We first use 48 galaxies undergoing different stages of stripping based on HI morphology, HI deficiency, and relative extent to the stellar disk, from the VIVA survey. We then employ a new scheme for galaxy classification which combines HI mass fractions and locations in projected phase space, resulting in a new sample of 365 galaxies. We utilize a variety of star formation tracers, which include g - r, WISE [3.4] - [12] colors, and starburstiness that are defined by stellar mass and star formation rates to compare the star formation activity of galaxies at different stripping stages. We find no clear evidence for enhancement in the integrated star formation activity of galaxies undergoing early to active stripping. We are instead able to capture the overall quenching of star formation activity with increasing degree of ram pressure stripping, in agreement with previous studies. Our results suggest that if there is any ram pressure stripping induced enhancement, it is at best locally modest, and galaxies undergoing enhancement make up a small fraction of the total sample. Our results also indicate that it is possible to trace galaxies at different stages of stripping with the combination of HI gas content and location in projected phase space, which can be extended to other galaxy clusters that lack high-resolution HI imaging.
Ram-pressure stripping (RPS) is a well observed phenomenon of massive spiral galaxies passing through the hot intra-cluster medium (ICM) of galaxy clusters. For dwarf galaxies (DGs) within a cluster, the transformation from gaseous to gas-poor systems by RPS is not easily observed and must happen in the outskirts of clusters. In a few objects in close by galaxy clusters and the field, RPS has been observed. Since cluster early-type DGs also show a large variety of internal structures (unexpected central gas reservoirs, blue stellar cores, composite radial stellar profiles), we aim in this study to investigate how ram pressure (RP) affects the interstellar gas content and therefore the star-formation (SF) activity. Using a series of numerical simulations, we quantify the dependence of the stripped-off gas on the velocity of the infalling DGs and on the ambient ICM density. We demonstrated that SF can be either suppressed or triggered by RP depending on the ICM density and the DGs mass. Under some conditions, RP can compress the gas, so that it is unexpectedly retained in the central DG region and forms stars. When gas clouds are still bound against stripping but lifted from a thin disk and fall back, their new stars form an ellipsoidal (young) stellar population already with a larger velocity dispersion without the necessity of harassment. Most spectacularly, star clusters can form downstream in stripped-off massive gas clouds in the case of strong RP. We compare our results to observations.
106 - Mario G. Abadi 1999
We use 3-dimensional SPH/N-BODY simulations to study ram pressure stripping of gas from spiral galaxies orbiting in clusters. We find that the analytic expectation of Gunn & Gott (1972) relating the gravitational restoring force provided by the disk to the ram pressure force, provides a good approximation to the radius that gas will be stripped from a galaxy. However, at small radii it is also important to consider the potential provided by the bulge component. A spiral galaxy passing through the core of a rich cluster such as Coma, will have its gaseous disk truncated to $sim 4$ kpc, thus losing $sim 80%$ of its diffuse gas mass. The timescale for this to occur is a fraction of a crossing time $sim 10^7$ years. Galaxies orbiting within poorer clusters, or inclined to the direction of motion through the intra-cluster medium will lose significantly less gas. We conclude that ram-pressure alone is insufficient to account for the rapid and widespread truncation of star-formation observed in cluster galaxies, or the morphological transformation of Sabs to S0s that is necessary to explain the Butcher-Oemler effect.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا