No Arabic abstract
[abridged] We investigate the Butcher-Oemler effect in a sample of K-selected galaxies in 33 clusters at 0.15 < z < 0.92. We attempt to duplicate the original Butcher-Oemler analysis as closely as possible given the characteristics of our data. We find that the infrared selected blue fractions are lower than those measured in the optical and that the trend with redshift is much weaker. Comparison with optical data in clusters in common with Butcher & Oemler (1984) shows that infrared selection is the primary difference between our study and optically selected samples. We suggest that the Butcher-Oemler effect is in large part due to a population of star-forming low mass galaxies which will evolve into dwarf galaxies. These early results point to the need for larger and deeper infrared samples of cluster galaxies to address this issue
We study the mid-infrared (MIR) properties of galaxies in 30 massive galaxy clusters at 0.02<z<0.40, using panoramic Spitzer/MIPS 24micron and NIR data. This is the largest sample of clusters to date with MIR data covering not only the cluster cores, but extending into the infall regions. We revisit the Butcher-Oemler effect, measuring the fraction of massive infrared-luminous galaxies (K<K*+1.5, L_IR>5x10^10L_sun) within r_200, finding a steady increase in the fraction with redshift from ~3% at z=0.02 to ~10% by z=0.30, and an rms cluster-to-cluster scatter about this trend of 0.03. The best-fit redshift evolution model is of the form f_SF ~ (1+z)^5.7, which is stronger redshift evolution than that of L*_IR in both clusters and the field. We find that, statistically, this excess is associated with galaxies found at large cluster-centric radii, implying that the MIR Butcher-Oemler effect can be explained by a combination of both the global decline in star-formation in the universe since z~1 and enhanced star formation in the infall regions of clusters at intermediate redshifts. This picture is supported by a simple infall model based on the Millennium Simulation semi-analytic galaxy catalogs, whereby star-formation in infalling galaxies is instantaneously quenched upon their first passage through the cluster, in that the observed radial trends of f_SF trace those inferred from the simulations. We also find that f_SF does not depend on simple indicators of the dynamical state of clusters, including the offset between the brightest cluster galaxy and the peak of the X-ray emission. This is consistent with the picture described above in that most new star-formation in clusters occurs in the infall regions, and is thus not sensitive to the details of cluster-cluster mergers in the core regions.
We present the results of Butcher-Oemler-style analysis of three moderate- redshift (0.1<z<0.2) clusters which have bimodal X-ray surface brightness profiles. We find that at least two of these clusters exhibit unusually high fractions of blue galaxies as compared to clusters at comparable redshifts studied by Butcher and Oemler (1984). This implies that star formation is occurring in a high fraction of the galaxies in the two clusters. Our results are consistent with hierarchical clustering models in which subcluster- subcluster mergers create shocks in the intracluster medium. The shocks, in turn, induce simultaneous starbursts in a large fraction of cluster galaxies. Our study therefore lends weight to the hypothesis that the Butcher-Oemler effect is an environmental, as well as evolutionary, phenomenon.
We examine the Butcher-Oemler effect and its cluster richness dependence in the largest sample studied to date: 295 Abell clusters. We find a strong correlation between cluster richness and the fraction of blue galaxies, f_B, at every redshift. The slope of the f_B(z) relation is similar for all richnesses, but at a given redshift, f_B is systematically higher for poor clusters. This is the chief cause of scatter in the f_B vs. z diagram: the spread caused by the richness dependence is comparable to the trend in f_B over a typical redshift baseline, so that conclusions drawn from smaller samples have varied widely. The two parameters, z, and a consistently defined projected galaxy number density, N, together account for all of the observed variation in f_B within the measurement errors. The redshift evolution of f_B is real, and occurs at approximately the same rate for clusters of all richness classes.
We derive the fraction of blue galaxies in a sample of clusters at z < 0.11 and the general field at the same redshift. The value of the blue fraction is observed to depend on the luminosity limit adopted, cluster-centric radius and, more generally, local galaxy density, but it does not depend on cluster properties. Changes in the blue fraction are due to variations in the relative proportions of red and blue galaxies but the star formation rate for these two galaxy groups remains unchanged. Our results are most consistent with a model where the star formation rate declines rapidly and the blue galaxies tend to be dwarfs and do not favour mechanisms where the Butcher-Oemler effect is caused by processes specific to the cluster environment.
We have studied the uJy radio properties of K-selected galaxies detected in the Ultra-Deep Survey portion of UKIDSS using 610- and 1,400-MHz images from the VLA and GMRT. These deep radio mosaics, combined with the largest and deepest K image currently available, allow high-S/N detections of many K-selected sub-populations, including sBzK and pBzK star-forming and passive galaxies. We find a strong correlation between the radio and K fluxes and a linear relationship between SFR and K luminosity. We find no evidence, from either radio spectral indices or a comparison with submm-derived SFRs, that the full sample is strongly contaminated by AGN. The sBzK and pBzK galaxies have similar levels of radio flux, SFR and specific SFR (SSFR) at z < 1.4, suggesting there is strong contamination of the pBzK sample by star-forming galaxies. At z > 1.4, pBzK galaxies become difficult to detect in the radio stack, though the implied SFRs are still much higher than expected for passively evolving galaxies. Their radio emission may come from low-luminosity AGN. EROs straddle the passive and star-forming regions of the BzK diagram and also straddle the two groups in terms of their radio properties. K-bright ERO samples are dominated by passive galaxies and faint ERO samples contain more star-forming galaxies. The star-formation history (SFH) from stacking all K sources in the UDS agrees well with that derived for other wavebands and other radio surveys, at least out to z ~ 2. The radio-derived SFH then appears to fall more steeply than that measured at other wavelengths. The SSFR for K-selected sources rises strongly with redshift at all stellar masses, and shows a weak dependence on stellar mass. High- and low-mass galaxies show a similar decline in SSFR since z ~ 2 (abridged).