The Star Formation History of Galaxies Measured from Individual Pixels. I. The Hubble Deep Field North


Abstract in English

We analyze the photometric information contained in individual pixels of galaxies in the Hubble Deep Field North (HDFN) using a new technique, _pixel-z_, that combines predictions of evolutionary synthesis models with photometric redshift template fitting. Each spectral energy distribution template is a result of modeling of the detailed physical processes affecting gas properties and star formation efficiency. The criteria chosen to generate the SED templates is that of sampling a wide range of physical characteristics such as age, star formation rate, obscuration and metallicity. A key feature of our method is the sophisticated use of error analysis to generate error maps that define the reliability of the template fitting on pixel scales and allow for the separation of the interplay among dust, metallicity and star formation histories. This technique offers a number of advantages over traditional integrated color studies. As a first application, we derive the star formation and metallicity histories of galaxies in the HDFN. Our results show that the comoving density of star formation rate, determined from the UV luminosity density of sources in the HDFN, increases monotonically with redshift out to at least redshift of 5. This behavior can plausibly be explained by a smooth increase of the UV luminosity density with redshift coupled with an increase in the number of star forming regions as a function of redshift. We also find that the information contained in individual pixels in a galaxy can be linked to its morphological history. Finally, we derive the metal enrichment rate history of the universe and find it in good agreement with predictions based on the evolving HI content of Lyman-alpha QSO absorption line systems.

Download