No Arabic abstract
We report medium resolution VLT ISAAC K-band spectroscopy of the nuclei of seven ultraluminous infrared galaxies. After accounting for stellar absorption features, we have detected several molecular hydrogen (H_2) v=1-0, 2-1, and 3-2 vibrational emission lines, as well as the HI Brgamma and HeI 2^1P-2^1S recombination lines. The relative H_2 line intensities show little variation between the objects, suggesting that the H_2 excitation mechanisms in the nuclei are similar in all the objects. The 1-0 emissions appear thermalised at temperatures Tsim1000K. However, the 2-1 and 3-2 emissions show evidence of being radiatively excited by far-ultraviolet (FUV) photons, suggesting that the H_2 excitation in the ULIRGs may arise in dense photon dominated regions (PDRs). We show that the line ratios in the nuclei are consistent with PDRs with cloud densities between 10^4 to 10^5cm^{-3}, exposed to far ultraviolet (FUV) radiation fields at least 10^3 times more intense than the ambient FUV intensity in the local interstellar medium. We have constructed starburst models for the ULIRGs based on their H_2 properties, as well as on the intensities of the recombination lines. Our models provide a consistent picture of young 1-5Myr star clusters surrounded by relatively dense PDRs which are irradiated by intense FUV fluxes. Comparison to the inner few hundred parsecs of the Milky Way indicates that the star formation efficiency in ULIRGs is 10--100 times higher than in the Galactic Center.
We conducted systematic observations of the H I Br$alpha$ (4.05 $mu$m) and Br$beta$ (2.63 $mu$m) lines in 52 nearby ($z<0.3$) ultraluminous infrared galaxies (ULIRGs) with AKARI. Among 33 ULIRGs wherein the lines are detected, three galaxies show anomalous Br$beta$/Br$alpha$ line ratios ($sim1.0$), which are significantly higher than those for case B (0.565). Our observations also show that ULIRGs have a tendency to exhibit higher Br$beta$/Br$alpha$ line ratios than those observed in Galactic H II regions. The high Br$beta$/Br$alpha$ line ratios cannot be explained by a combination of dust extinction and case B since dust extinction reduces the ratio. We explore possible causes for the high Br$beta$/Br$alpha$ line ratios and show that the observed ratios can be explained by a combination of an optically thick Br$alpha$ line and an optically thin Br$beta$ line. We simulated the H II regions in ULIRGs with the Cloudy code, and our results show that the high Br$beta$/Br$alpha$ line ratios can be explained by high-density conditions, wherein the Br$alpha$ line becomes optically thick. To achieve a column density large enough to make the Br$alpha$ line optically thick within a single H II region, the gas density must be as high as $nsim10^8$ $mathrm{cm}^{-3}$. We therefore propose an ensemble of H II regions, in each of which the Br$alpha$ line is optically thick, to explain the high Br$beta$/Br$alpha$ line ratio.
Ever since their discovery in the 1970s, UltraLuminous InfraRed Galaxies (ULIRGs; classically Lir>10^12Lsun) have fascinated astronomers with their immense luminosities, and frustrated them due to their singularly opaque nature, almost in equal measure. Over the last decade, however, comprehensive observations from the X-ray through to the radio have produced a consensus picture of local ULIRGs, showing that they are mergers between gas rich galaxies, where the interaction triggers some combination of dust-enshrouded starburst and AGN activity, with the starburst usually dominating. Very recent results have thrown ULIRGs even further to the fore. Originally they were thought of as little more than a local oddity, but the latest IR surveys have shown that ULIRGs are vastly more numerous at high redshift, and tantalizing suggestions of physical differences between high and low redshift ULIRGs hint at differences in their formation modes and local environment. In this review we look at recent progress on understanding the physics and evolution of local ULIRGs, the contribution of high redshift ULIRGs to the cosmic infrared background and the global history of star formation, and the role of ULIRGs as diagnostics of the formation of massive galaxies and large-scale structures.
Mid-infrared molecular hydrogen (H$_2$) emission is a powerful cooling agent in galaxy mergers and in radio galaxies; it is a potential key tracer of gas evolution and energy dissipation associated with mergers, star formation, and accretion onto supermassive black holes. We detect mid-IR H$_2$ line emission in at least one rotational transition in 91% of the 214 Luminous Infrared Galaxies (LIRGs) observed with Spitzer as part of the Great Observatories All-sky LIRG Survey (GOALS). We use H$_2$ excitation diagrams to estimate the range of masses and temperatures of warm molecular gas in these galaxies. We find that LIRGs in which the IR emission originates mostly from the Active Galactic Nuclei (AGN) have about 100K higher H$_2$ mass-averaged excitation temperatures than LIRGs in which the IR emission originates mostly from star formation. Between 10 and 15% of LIRGs have H$_2$ emission lines that are sufficiently broad to be resolved or partially resolved by the high resolution modules of Spitzers Infrared Spectrograph (IRS). Those sources tend to be mergers and contain AGN. This suggests that a significant fraction of the H$_2$ line emission is powered by AGN activity through X-rays, cosmic rays, and turbulence. We find a statistically significant correlation between the kinetic energy in the H$_2$ gas and the H$_2$ to IR luminosity ratio. The sources with the largest warm gas kinetic energies are mergers. We speculate that mergers increase the production of bulk in-flows leading to observable broad H$_2$ profiles and possibly denser environments.
Molecular species, most frequently H_2, are present in a small, but growing, number of gamma-ray burst (GRB) afterglow spectra at redshifts z~2-3, detected through their rest-frame UV absorption lines. In rare cases, lines of vibrationally excited states of H_2 can be detected in the same spectra. The connection between afterglow line-of-sight absorption properties of molecular (and atomic) gas, and the observed behaviour in emission of similar sources at low redshift, is an important test of the suitability of GRB afterglows as general probes of conditions in star formation regions at high redshift. Recently, emission lines of carbon monoxide have been detected in a small sample of GRB host galaxies, at sub-mm wavelengths, but no searches for H_2 in emission have been reported yet. In this paper we perform an exploratory search for rest-frame K band rotation-vibrational transitions of H_2 in emission, observable only in the lowest redshift GRB hosts (z<0.22). Searching the data of four host galaxies, we detect a single significant rotation-vibrational H_2 line candidate, in the host of GRB 031203. Re-analysis of Spitzer mid-infrared spectra of the same GRB host gives a single low significance rotational line candidate. The (limits on) line flux ratios are consistent with those of blue compact dwarf galaxies in the literature. New instrumentation, in particular on the JWST and the ELT, can facilitate a major increase in our understanding of the H_2 properties of nearby GRB hosts, and the relation to H_2 absorption in GRBs at higher redshift.