Do you want to publish a course? Click here

Peculiar velocities of galaxy clusters: a comparison with the linear theory

58   0   0.0 ( 0 )
 Added by Mirt Gramann
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate peculiar velocities predicted for clusters in Lambda cold dark matter ($Lambda$CDM) models assuming that the initial density fluctuation field is Gaussian. To study the non-linear regime, we use N-body simulations. We investigate the rms velocity and the probability distribution function of cluster peculiar velocities for different cluster masses. To identify clusters in the simulation we use two methods: the standard friends-of-friends (FOF) method and the method, where the clusters are defined as maxima of a smoothed density field (DMAX). The density field is smoothed with a top-hat window, using the smoothing radii $R_s=1.5h^{-1}$ Mpc and $R_s=1.0h^{-1}$ Mpc. The peculiar velocity of the DMAX clusters is defined to be the mean peculiar velocity of matter within a sphere of the radius $R_s$. We find that the rms velocity of the FOF clusters decreases as the cluster mass increases. The rms velocity of the DMAX clusters is almost independent of the cluster mass and is well approximated by the linear rms peculiar velocity smoothed at the radius $R=R_s$. The velocity distribution function of the DMAX clusters is similar to a Gaussian.



rate research

Read More

97 - S. Borgani 1997
Recently, peculiar velocity measurements became available for a new sample of galaxy clusters. From an accurately calibrated Tully-Fisher relation for spiral galaxies, we compute the rms cluster peculiar velocity and compare it to the linear theory predictions of COBE-normalized low-density and open CDM models (LambdaCDM and OCDM, respectively). Confidence levels for model rejection are estimated using a Monte Carlo procedure to generate for each model a large ensemble of artificial data sets. Following Zaroubi et al. (1997), we express our results in terms of constraints on the (Omega_0,n_pr,h) parameter space. Such constraints turn into sigma_8 Omega_0^{0.6}=0.50^{+0.25}_{-0.14} at the 90% c.l., thus in agreement with results from cluster abundance. We show that our constraints are also consistent with those implied by the shape of the galaxy power spectrum within a rather wide range for the values of the model parameters. Finally, we point out that our findings disagree at about the 3sigma level with respect to those by Zaroubi et al. (1997), based on the Mark III catalogue, which tend to prefer larger Omega_0 values within the CDM class of models.
We perform statistical analyses to study the infall of galaxies onto groups and clusters in the nearby Universe. The study is based on the UZC and SSRS2 group catalogs and peculiar velocity samples. We find a clear signature of infall of galaxies onto groups over a wide range of scales 5 h^{-1} Mpc<r<30 h^{-1} Mpc, with an infall amplitude on the order of a few hundred kilometers per second. We obtain a significant increase in the infall amplitude with group virial mass (M_{V}) and luminosity of group member galaxies (L_{g}). Groups with M_{V}<10^{13} M_{odot} show infall velocities V_{infall} simeq 150 km s^{-1} whereas for M_{V}>10^{13} M_{odot} a larger infall is observed, V_{infall} simeq 200 km s^{-1}. Similarly, we find that galaxies surrounding groups with L_{g}<10^{15} L_{odot} have V_{infall} simeq 100 km s^{-1}, whereas for L_{g}>10^{15} L_{odot} groups, the amplitude of the galaxy infall can be as large as V_{infall} simeq 250 km s^{-1}. The observational results are compared with the results obtained from mock group and galaxy samples constructed from numerical simulations, which include galaxy formation through semianalytical models. We obtain a general agreement between the results from the mock catalogs and the observations. The infall of galaxies onto groups is suitably reproduced in the simulations and, as in the observations, larger virial mass and luminosity groups exhibit the largest galaxy infall amplitudes. We derive estimates of the integrated mass overdensities associated with groups by applying linear theory to the infall velocities after correcting for the effects of distance uncertainties obtained using the mock catalogs. The resulting overdensities are consistent with a power law with delta sim 1 at r sim 10 h^{-1}Mpc.
59 - Ravi K. Sheth 2000
We write the correlation function of dark matter particles, xi(r), as the sum of two terms - one which accounts for nonlinear evolution, and dominates on small scales, and another which is essentially the term from linear theory, and dominates on large scales. We use models of the number and spatial distribution of haloes and halo density profiles to describe the nonlinear term and its evolution. The result provides a good description of the evolution of xi(r) in simulations. We then use this decomposition to provide simple and accurate models of how the single particle velocity dispersion evolves with time, and how the first and second moments of the pairwise velocity distribution depend on scale. The key idea is to use the simple physics of linear theory on large scales, the simple physics of the virial theorem on small scales, and our model for the correlation function to tell us how to weight the two types of contributions (linear and nonlinear) to the pairwise velocity statistics. When incorporated into the streaming model, our results will allow a simple accurate description of redshift-space distortions over the entire range of linear to highly nonlinear regimes.
508 - A. Kashlinsky 2009
This paper presents detailed analysis of large-scale peculiar motions derived from a sample of ~ 700 X-ray clusters and cosmic microwave background (CMB) data obtained with WMAP. We use the kinematic Sunyaev-Zeldovich (KSZ) effect combining it into a cumulative statistic which preserves the bulk motion component with the noise integrated down. Such statistic is the dipole of CMB temperature fluctuations evaluated over the pixels of the cluster catalog (Kashlinsky & Atrio-Barandela 2000). To remove the cosmological CMB fluctuations the maps are Wiener-filtered in each of the eight WMAP channels (Q, V, W) which have negligible foreground component. Our findings are as follows: The thermal SZ (TSZ) component of the clusters is described well by the Navarro-Frenk-White profile expected if the hot gas traces the dark matter in the cluster potential wells. Such gas has X-ray temperature decreasing rapidly towards the cluster outskirts, which we demonstrate results in the decrease of the TSZ component as the aperture is increased to encompass the cluster outskirts. We then detect a statistically significant dipole in the CMB pixels at cluster positions. Arising exclusively at the cluster pixels this dipole cannot originate from the foreground or instrument noise emissions and must be produced by the CMB photons which interacted with the hot intracluster gas via the SZ effect. The dipole remains as the monopole component, due to the TSZ effect, vanishes within the small statistical noise out to the maximal aperture where we still detect the TSZ component. We demonstrate with simulations that the mask and cross-talk effects are small for our catalog and contribute negligibly to the measurements. The measured dipole thus arises from the KSZ effect produced by the coherent large scale bulk flow motion.
We propose two new methods for measuring tangential peculiar velocities of rich clusters of galaxies. Our first method is based on weak gravitational lensing and takes advantage of the differing images of background galaxies caused by moving and stationary gravitational potentials. Our second method is based on measuring relative frequency shifts between multiple images of a single strongly lensed background galaxy. We illustrate this method using the example of galaxy cluster CL 0024+1654.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا