No Arabic abstract
The 2dF Galaxy Redshift Survey (2dFGRS) has obtained spectra for 245591 sources, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of b_J=19.45. Reliable redshifts were measured for 221414 galaxies. The galaxies are selected from the extended APM Galaxy Survey and cover an area of approximately 1500 square degrees in three regions: an NGP strip, an SGP strip and random fields scattered around the SGP strip. This paper describes the 2dFGRS final data release of 30 June 2003 and complements Colless et al. (2001), which described the survey and the initial 100k data release. The 2dFGRS database and full documentation are available on the WWW at http://www.mso.anu.edu.au/2dFGRS/
We have entered a new era where integral-field spectroscopic surveys of galaxies are sufficiently large to adequately sample large-scale structure over a cosmologically significant volume. This was the primary design goal of the SAMI Galaxy Survey. Here, in Data Release 3 (DR3), we release data for the full sample of 3068 unique galaxies observed. This includes the SAMI cluster sample of 888 unique galaxies for the first time. For each galaxy, there are two primary spectral cubes covering the blue (370-570nm) and red (630-740nm) optical wavelength ranges at spectral resolving power of R=1808 and 4304 respectively. For each primary cube, we also provide three spatially binned spectral cubes and a set of standardized aperture spectra. For each galaxy, we include complete 2D maps from parameterized fitting to the emission-line and absorption-line spectral data. These maps provide information on the gas ionization and kinematics, stellar kinematics and populations, and more. All data are available online through Australian Astronomical Optics (AAO) Data Central.
We present the result of a decomposition of the 2dFGRS galaxy overdensity field into an orthonormal basis of spherical harmonics and spherical Bessel functions. Galaxies are expected to directly follow the bulk motion of the density field on large scales, so the absolute amplitude of the observed large-scale redshift-space distortions caused by this motion is expected to be independent of galaxy properties. By splitting the overdensity field into radial and angular components, we linearly model the observed distortion and obtain the cosmological constraint Omega_m^{0.6} sigma_8=0.46+/-0.06. The amplitude of the linear redshift-space distortions relative to the galaxy overdensity field is dependent on galaxy properties and, for L_* galaxies at redshift z=0, we measure beta(L_*,0)=0.58+/-0.08, and the amplitude of the overdensity fluctuations b(L_*,0) sigma_8=0.79+/-0.03, marginalising over the power spectrum shape parameters. Assuming a fixed power spectrum shape consistent with the full Fourier analysis produces very similar parameter constraints.
We present a power spectrum analysis of the final 2dF Galaxy Redshift Survey, employing a direct Fourier method. The sample used comprises 221,414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys which are used to demonstrate that the input cosmological model can be correctly recovered. We are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the `baryon oscillations that are predicted in CDM models. Fitting to a CDM model, assuming a primordial $n_{s}=1$ spectrum, $h=0.72$ and negligible neutrino mass, the preferred parameters are $Omega_{M} h = 0.168 pm 0.016$ and a baryon fraction $Omega_{b} /Omega_{M} = 0.185pm0.046$ (1$sigma$ errors). The value of $Omega_{M} h$ is $1sigma$ lower than the $0.20 pm 0.03$ in our 2001 analysis of the partially complete 2dFGRS. This shift is largely due to the signal from the newly-sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard $Omega_{M} =0.3$: in combination with CMB data from WMAP, we infer $Omega_{M} =0.231pm 0.021$. (Abridged.)
We report the final redshift release of the 6dF Galaxy Survey, a combined redshift and peculiar velocity survey over the southern sky (|b|>10 deg). Its 136,304 spectra have yielded 110,256 new extragalactic redshifts and a new catalogue of 125,071 galaxies making near-complete samples with (K, H, J, r_F, b_J) <= (12.65, 12.95, 13.75, 15.60, 16.75). The median redshift of the survey is 0.053. Survey data, including images, spectra, photometry and redshifts, are available through an online database. We describe changes to the information in the database since earlier interim data releases. Future releases will include velocity dispersions, distances and peculiar velocities for the brightest early-type galaxies, comprising about 10% of the sample. Here we provide redshift maps of the southern local universe with z<=0.1, showing nearby large-scale structures in hitherto unseen detail. A number of regions known previously to have a paucity of galaxies are confirmed as significantly underdense regions. The URL of the 6dFGS database is http://www-wfau.roe.ac.uk/6dFGS
The 2dF Galaxy Redshift Survey (2dFGRS) is designed to measure redshifts for approximately 250000 galaxies. This paper describes the survey design, the spectroscopic observations, the redshift measurements and the survey database. The 2dFGRS uses the 2dF multi-fibre spectrograph on the Anglo-Australian Telescope, which is capable of observing 400 objects simultaneously over a 2-degree diameter field. The source catalogue for the survey is a revised and extended version of the APM galaxy catalogue, and the targets are galaxies with extinction-corrected magnitudes brighter than b_J=19.45. The main survey regions are two declination strips, one in the southern Galactic hemisphere spanning 80deg x 15deg around the SGP, and the other in the northern Galactic hemisphere spanning 75deg x 10deg along the celestial equator; in addition, there are 99 fields spread over the southern Galactic cap. The survey covers 2000 sq.deg and has a median depth of z=0.11. Adaptive tiling is used to give a highly uniform sampling rate of 93% over the whole survey region. Redshifts are measured from spectra covering 3600A-8000A at a two-pixel resolution of 9.0A and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8%, but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS database is available on the WWW at http://www.mso.anu.edu.au/2dFGRS