Do you want to publish a course? Click here

A Deep Chandra X-ray Observation of the Embedded Young Cluster in NGC 2024

80   0   0.0 ( 0 )
 Added by Stephen Skinner
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of a sensitive 76 ksec Chandra observation of the young stellar cluster in NGC 2024 (d = 415 pc) in the Orion B giant molecular cloud. Previous infrared observations have shown that this remarkable cluster contains several hundred embedded young stars, most of which are still surrounded by circumstellar disks. Thus, it presents a rare opportunity to study X-ray activity in a large sample of optically invisible protostars and classical T Tauri stars (cTTS) undergoing accretion. Chandra detected 283 X-ray sources of which 248 were identified with counterparts at other wavelengths, mostly in the near-IR. Astrometric registration of Chandra images against 2MASS resulted in sub-arcsecond positional accuracy and high-confidence identifications of IR counterparts. The Chandra detections are characterized by hard heavily- absorbed spectra and spectacular variability. Spectral analysis of >100 sources gives a mean extinction A_v = 10.5 mag and typical plasma energies E = 3 keV. The range of variability includes rapid impulsive flares and persistent low-level fluctuations indicative of strong magnetic activity, as well as slow rises and falls in count rate whose origin is more obscure. Some outbursts reached sustained temperatures of kT = 6 - 10 keV. Chandra detected all but one of a subsample of 27 cTTS identified from previous IR photometry, and their X-ray and bolometric luminosities are correlated. We also report the X-ray detection of IRS 2b, which is thought to be a massive embedded late O or early B star that may be the ionizing source of NGC 2024. Seven millimeter-bright cores (FIR 1-7) in NGC 2024 that may be protostellar were not detected, with the possible exception of faint emission near the unusual core FIR-4.



rate research

Read More

62 - Y. Yang 2001
We present Chandra X-ray observations of the nearby Seyfert 1.5 galaxy NGC 4151. The images show the extended soft X-ray emission on the several hundreds of pc scale with better sensitivity than previously obtained. The spectrum of the unresolved nuclear source may be described by a heavily absorbed (N_{H} simeq 3 times 10^{22} cm^-2), hard power-law (Gamma simeq 0.3) plus soft emission from either a power-law (Gamma simeq 2.6) or a thermal (kT simeq 0.6 keV) component. The flux of the high energy component has decreased from that observed by ASCA in 1993 and the spectrum is much harder.The large difference between the soft and hard spectral shapes does not favor the partial covering or scattering model of the ``soft excess. Instead, it is likely that the hard and soft nuclear components represent intrinsically different X-ray sources. Spectra of the extended emission to almost 1 kpc NE and SW of the nucleus have also been obtained. The spectra of these regions may be described by either thermal bremsstrahlung (kT simeq 0.4-0.7 keV) or power-law (Gamma simeq 2.5-3.2) continua plus 3 emission lines. There is an excellent correlation between the extended X-ray and [O III]lambda 5007 line emissions. We discuss the nature of the extended X-ray emission. Upper limit to the electron scattering column was obtained. This upper limit is much too low for the soft X-rays to be electron scattered nuclear radiation.
100 - T. L. Beck 2002
We present the results of a high resolution near infrared adaptive optics survey of the young obscured star forming region NGC 2024. Out of the total 73 stars detected in the adaptive optics survey of the cluster, we find 3 binaries and one triple. The resulting companion star fraction, 7+/-3% in the separation range of 0.35-2.3 (145-950 AU), is consistent with that expected from the multiplicity of mature solar-type stars in the local neighborhood. Our survey was sensitive to faint secondaries but no companions with Delta K > 1.2 magnitudes are detected within 2 of any star. The cluster has a K luminosity function that peaks at ~12, and although our completeness limit was 17.7 magnitude at K, the faintest star we detect had a K magnitude of 16.62.
This paper presents the analysis of candidate quiescent low mass xray binarie (qLMXBs) observed during a short Chandra/ACIS observation of the globular cluster (GC) NGC 6304. Two out of the three candidate qLMXBs of this cluster, XMMU 171433-292747 and XMMU 171421-292917, lie within the field of view. This permits comparison with the discovery observation of these sources. The one in the GC core -- XMMU 171433-292747 -- is spatially resolved into two separate X-ray sources, one of which is consistent with a pure H-atmosphere qLMXB, and the other is an X-ray power-law spectrum source. These two spectral components separately account for those observed from XMMU 171433-292747 in its discovery observation. We find that the observed flux and spectral parameters of the H-atmosphere spectral components are consistent with the previous observation, as expected from a qLMXB powered by deep crustal heating. XMMU 171421-292917 also has neutron star atmosphere spectral parameters consistent with those in the XMM-Newton observation and the observed flux has decreased by a factor 0.54^{+0.30}_{-0.24}.
We present an analysis of NICMOS observations of the embedded cluster associated with NGC 2024. An analysis of the cluster color-magnitude diagram (CMD) using the models of DAntona & Mazzitelli (1997) and Baraffe et al. (1998) indicates that the ratio of intermediate mass (1.0 to 10.0 M_sun) to low mass (0.1 to 1.0 M_sun) stars is consistent with the stellar initial mass function (IMF) for the field. In addition to the CMD analysis, we present results on the multiplicity of stars in the region. Three companions (in a sample of 95 potential primaries) were found, with angular separations between 0.4 and 1.0, translating to a projected linear separation of 184 AU to 460 AU for an estimated distance of 460 pc. The completeness of binary detections is assessed using recovery fractions calculated by a series of tests using artificially generated companions to potential primaries in the data frames. We find that the binary fraction in NGC 2024 is consistent with that of Duquennoy & Mayor (1991) for solar neighborhood stars over the range of separations and companion masses appropriate for our survey.
NGC 7129 is a bright reflection nebula located in the molecular cloud complex near l=105.4, b=+9.9, about 1.15 kpc distant. Embedded within the reflection nebula is a young cluster dominated by a compact grouping of four early-type stars: BD+65 1638 (B3V), BD+65 1637 (B3e), SVS 13 (B5e), and LkH-alpha 234 (B8e). About 80 H-alpha emission sources brighter than V~23 are identified in the region, many of which are presumably T Tauri star members of the cluster. We also present deep (V~23), optical (VRI) photometry of a field centered on the reflection nebula and spectral types for more than 130 sources determined from low dispersion, optical spectroscopy. The narrow pre-main sequence evident in the color-magnitude diagram suggests that star formation was rapid and coeval. A median age of about 1.8 Myr is inferred for the H-alpha and literature-identified X-ray emission sources having established spectral types, using pre-main sequence evolutionary models. Our interpretation of the structure of the molecular cloud and the distribution of young stellar objects is that BD+65 1638 is primarily responsible for evacuating the blister-like cavity within the molecular cloud. LkH-alpha 234 and several embedded sources evident in near infrared adaptive optics imaging have formed recently within the ridge of compressed molecular gas. The compact cluster of low-mass stars formed concurrently with the early-type members, concentrated within a central radius of ~0.7 pc. Star formation is simultaneously occurring in a semi-circular arc some ~3 pc in radius that outlines remaining dense regions of molecular gas. High dispersion, optical spectra are presented for BD+65 1638, BD+65 1637, SVS 13, LkH-alpha 234, and V350 Cep. These spectra are discussed in the context of the circumstellar environments inferred for these stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا