Broad Absorption Line (BAL) QSOs have been suggested to be youthful super-accretors based on their powerful radiatively driven absorbing outflows and often reddened continua. To test this hypothesis, we observed near IR spectra of the H$beta$ region for 11 bright BAL QSOs at redshift z ~ 2. We measured these and literature spectra for 6 BAL QSOs, 13 radio-loud and 7 radio-quiet non-BAL QSOs. Using the luminosity and H$beta$ broad line width to derive black hole mass and accretion rate, we find that both BAL and non-BAL QSOs at z ~ 2 tend to have higher $L/L_{Edd}$ than those at low z -- probably a result of selecting the brightest QSOs. However, we find that the high z QSOs, in particular the BAL QSOs, have extremely strong Fe II and very weak [O III], extending the inverse relationship found for low z QSOs. This suggests that, even while radiating near $L_{Edd}$, the BAL QSOs have a more plentiful fuel supply than non-BAL QSOs. Comparison with low z QSOs shows for the first time that the inverse Fe II -- [O III] relationship is indeed related to $L/L_{Edd}$, rather than black hole mass.