Do you want to publish a course? Click here

A pulsational approach to near infrared and visual magnitudes of RR Lyrae stars

48   0   0.0 ( 0 )
 Added by Marcella Marconi
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present an improved theoretical scenario concerning near infrared and visual magnitudes of RR Lyrae variables, as based on up-to-date pulsating models. On this basis, we revisit the case of the prototype variable RR Lyr, showing that the parallax inferred by this new pulsational approach appears in close agreement with HST absolute parallax. Moreover, available K and V measurements for field and cluster RR Lyrae variables with known reddening and metal content are used to derive a relation connecting the K absolute magnitude to period and metallicity, as well as a new calibration of the M_V-[Fe/H] relation. The comparison between theoretical prescriptions and observations suggests that RR Lyrae stars in the field and in Galactic Globular Clusters should have quite similar evolutionary histories. The comparison between theory and observations also discloses a general agreement that supports the reliability of current pulsational scenario. On the contrary, current empirical absolute magnitudes based on the Baade-Wesselink (BW) method suggest relations with a zero-point that is fainter than predicted by pulsation models, together with a milder metallicity dependence. However, preliminary results based on a new calibration of the BW method provided by Cacciari et al. (2000) for RR Cet and SW And appear in a much better agreement with the pulsational predictions.



rate research

Read More

We present new Near-Infrared (J,K) magnitudes for 114 RR Lyrae stars in the globular cluster Omega Cen (NGC 5139) which we combine with data from the literature to construct a sample of 180 RR Lyrae stars with J and K mean magnitudes on a common photometric system. This is presently the largest such sample in any stellar system. We also present updated predictions for J,K-band Period-Luminosity relations for both fundamental and first-overtone RR Lyrae stars, based on synthetic horizontal branch models with metal abundance ranging from Z=0.0001 to Z=0.004. By adopting for the Omega Cen variables with measured metal abundances an alpha-element enhancement of a factor of 3 (about 0.5 dex) with respect to iron we find a true distance modulus of 13.70 (with a random error of 0.06 and a systematic error of 0.06), corresponding to a distance d=5.5 Kpc (with both random and systematic errors equal to 0.03 Kpc). Our estimate is in excellent agreement with the distance inferred for the eclipsing binary OGLEGC-17, but differ significantly from the recent distance estimates based on cluster dynamics and on high amplitude Delta Scuti stars.
100 - V. F. Braga (1 , 2 , 3 2018
We present a new complete Near-Infrared (NIR, $JHK_s$) census of RR Lyrae stars (RRLs) in the globular $omega$ Cen (NGC 5139). We collected 15,472 $JHK_s$ images with 4-8m class telescopes over 15 years (2000-2015) covering a sky area around the cluster center of 60x34 arcmin$^2$. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with ten to sixty measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 ($J$), 176 ($H$) and 174 ($K_s$) RRLs. These data were supplemented with single-epoch $JK_s$ magnitudes from VHS and with single-epoch $H$ magnitudes from 2MASS. Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide $JHK_s$ magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed--mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P>0.7 days) fundamental RRLs. Using predicted Period-Luminosity-Metallicity relations, we derive a true distance modulus of 13.674$pm$0.008$pm$0.038 mag (statistical error and standard deviation of the median)---based on spectroscopic iron abundances---and of 13.698$pm$0.004$pm$0.048 mag---based on photometric iron abundances. We also found evidence of possible systematics at the 5-10% level in the zero-point of the PLs based on the five calibrating RRLs whose parallaxes had been determined with HST
170 - F. Caputo 1999
We present B and V CCD photometry for variables in the cluster central region, adding new data for 32 variables and giving suitable light curves, mean magnitudes and corrected colors for 17 RR Lyrae. Implementing the data given in this paper with similar data already appeared in the literature we discuss a sample of 42 variables, as given by 22 RRab and 20 RRc, to the light of recent predictions from pulsational theories. We find that the observational evidence concerning M5 pulsators appears in marginal disagreement with predictions concerning the color of the First Overtone Blue Edge (FOBE), whereas a clear disagreement appears between the ZAHB luminosities predicted through evolutionary or pulsational theories.
We analysed 30 RR Lyrae stars (RRLs) located in the Large Magellanic Cloud (LMC) globular cluster Reticulum that were observed in the 3.6 and 4.5 $mu$m passbands with the Infrared Array Camera (IRAC) on board of the Spitzer Space Telescope. We derived new mid-infrared (MIR) period-luminosity PL relations. The zero points of the PL relations were estimated using the trigonometric parallaxes of five bright Milky Way (MW) RRLs measured with the Hubble Space Telescope (HST) and, as an alternative, we used the trigonometric parallaxes published in the first Gaia data release (DR1) which were obtained as part of the Tycho-Gaia Astrometric Solution (TGAS) and the parallaxes of the same stars released with the second Gaia data release (DR2). We determined the distance to Reticulum using our new MIR PL relations and found that distances calibrated on the TGAS and DR2 parallaxes are in a good agreement and, generally, smaller than distances based on the HST parallaxes, although they are still consistent within the respective errors. We conclude that Reticulum is located ~3 kpc closer to us than the barycentre of the LMC.
We have obtained single-phase near-infrared (NIR) magnitudes in the J- and K-bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for RRL stars to derive their absolute magnitudes, and found a true, reddening-corrected distance modulus of 20.818 +/- 0.015 (statistical) +/- 0.116 (systematic) mag. This value is in excellent agreement with the results obtained within the Araucaria Project from the NIR photometry of red clump stars (20.858 +/- 0.013 mag), the tip of the red giant branch (20.84 +/- 0.04 +/- 0.14 mag), as well as with other independent distance determinations to this galaxy. The effect of metallicity and reddening is substantially reduced in the NIR domain, making this method a robust tool for accurate distance determination at the 5 percent level. This precision is expected to reach the level of 3 percent once the zero points of distance calibrations are refined thanks to the Gaia mission. NIR period-luminosity-metallicity relations of RRL stars are particularly useful for distance determinations to galaxies and globular clusters up to 300 kpc, that lack young standard candles, like Cepheids.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا