No Arabic abstract
We have measured the clustering of z<0.9 red galaxies and constrained models of the evolution of large-scale structure using the initial 1.2 sq. degree data release of the NOAO Deep Wide-Field Survey (NDWFS). The area and BwRI passbands of the NDWFS allow samples of >1000 galaxies to be selected as a function of spectral type, absolute magnitude, and photometric redshift. Spectral synthesis models can be used to predict the colors and luminosities of a galaxy population as a function of redshift. We have used PEGASE2 models, with exponentially declining star formation rates, to estimate the observed colors and luminosity evolution of galaxies and to connect, as an evolutionary sequence, related populations of galaxies at different redshifts. A red galaxy sample, with present-day rest-frame Vega colors of Bw-R>1.44, was chosen to allow comparisons with the 2dF Galaxy Redshift Survey and Sloan Digital Sky Survey. We find the spatial clustering of red galaxies to be a strong function of luminosity, with r0 increasing from 4.4+/-0.4 Mpc/h at M_R=-20 to 11.2+/-1.0 Mpc/h at M_R=-22. Clustering evolution measurements using samples where the rest-frame selection criteria vary with redshift, including all deep single-band magnitude limited samples, are biased due to the correlation of clustering with rest-frame color and luminosity. The clustering of M_R=-21, Bw-R>1.44 galaxies exhibits no significant evolution over the redshift range observed with r0= 6.3+/-0.5 Mpc/h in comoving coordinates. This is consistent with recent LCDM models where the bias of L* galaxies undergoes rapid evolution and r0 evolves very slowly at z<2.
We report our search for the cool white dwarfs belonging to the Galactic disk by extending the NOAO Deep Wide-Field Survey. Narrow-band DDO51 photometry of the Deep Wide-Field Surveys northern field was obtained using the 4m-Mayall Telescope and the MOSAIC imager to separate cool white dwarfs from other stellar types of similar T_eff. Follow-up spectroscopy of four white dwarf candidates from our photometric search resulted in the discovery of two new cool white dwarfs as companions to M dwarfs.
The Spitzer Deep, Wide-Field Survey (SDWFS) is a four-epoch infrared survey of ten square degrees in the Bootes field of the NOAO Deep Wide-Field Survey using the IRAC instrument on the Spitzer Space Telescope. SDWFS, a Cycle four Spitzer Legacy project, occupies a unique position in the area-depth survey space defined by other Spitzer surveys. The four epochs that make up SDWFS permit -- for the first time -- the selection of infrared-variable and high proper motion objects over a wide field on timescales of years. Because of its large survey volume, SDWFS is sensitive to galaxies out to z~3 with relatively little impact from cosmic variance for all but the richest systems. The SDWFS datasets will thus be especially useful for characterizing galaxy evolution beyond z~1.5. This paper explains the SDWFS observing strategy and data processing, presents the SDWFS mosaics and source catalogs, and discusses some early scientific findings. The publicly-released, full-depth catalogs contain 6.78, 5.23, 1.20, and 0.96 x 10e5 distinct sources detected to the average 5-sigma, 4 diameter, aperture-corrected limits of 19.77, 18.83, 16.50, and 15.82 Vega mag at 3.6, 4.5, 5.8, and 8.0 micron, respectively. The SDWFS number counts and color-color distribution are consistent with other, earlier Spitzer surveys. At the 6 min integration time of the SDWFS IRAC imaging, more than 50% of isolated FIRST radio sources and more than 80% of on-axis XBootes sources are detected out to 8.0 micron. Finally, we present the four highest proper motion IRAC-selected sources identified from the multi-epoch imaging, two of which are likely field brown dwarfs of mid-T spectral class.
We present the galaxy-galaxy angular correlations as a function of photometric redshift in a deep-wide galaxy survey centered on the Hubble Deep Field South. Images were obtained with the Big Throughput Camera on the Blanco 4m telescope at CTIO, of 1/2 square degree in broad-band uBVRI, reaching ~24th mag. Approximately 40,000 galaxies are detected in the survey. We determine photometric redshifts using galaxy template fitting to the photometry. Monte Carlo simulations show that redshifts from these data should be reliable out to z~1, where the 4000 Angstrom break shifts into the I-band. The inferred redshift distribution, n(z), shows good agreement with the distribution of galaxies measured in the HDF North and the Canada-France Redshift Survey. After assigning galaxies to redshift bins with width Delta_z=0.33, we determine the two point angular correlation function in each bin. We find that the amplitude of the correlation, A_w, drops across the three bins to redshift z~1. Simple epsilon models of clustering evolution fit this result, with the best agreement for epsilon=0. Hierarchical cold-dark-matter models best fit in a low density, Lambda-dominated universe.
We study the spatial clustering through the projected two-point correlation function of $632$ $(1130)$ XMM-COSMOS Active Galactic Nuclei (AGNs) with known spectroscopic (spectroscopic or photometric) redshifts in the range $z = [0.1 - 2.5]$ in order to measure the AGN bias and estimate the typical mass of the hosting dark matter (DM) halo as a function of AGN host galaxy properties. We create AGN subsamples in terms of stellar mass $M_*$ and specific black hole accretion rate $L_X/M_*$, to probe how AGN environment depends on these quantities. For the full spectroscopic AGN sample, we measure a typical DM halo mass of $log (M_mathrm{halo} / h^{-1}mathrm{M}_odot)= 12.79_{-0.43}^{+0.26}$, similar to galaxy group environments and in line with previous studies for moderate-luminosity X-ray selected AGN. We find no significant dependence on $L_X/M_*$, with $log (M_mathrm{halo} / h^{-1}mathrm{M}_odot) = 13.06_{-0.38}^{+0.23}$ ($12.97_{-1.26}^{+0.39}$) for the low (high) $L_X/M_*$ subsample. We also find no difference in the hosting halos in terms of $M_*$ with $log (M_mathrm{halo} / h^{-1}mathrm{M}_odot) = 12.93_{-0.62}^{+0.31}$ ($12.90_{-0.62}^{+0.30}$) for the low (high) $M_*$ subsample. By comparing the $M_*-M_mathrm{halo}$ relation derived for XMM-COSMOS AGN subsamples with what is expected for normal non-active galaxies by abundance matching and clustering results, we find that the typical DM halo mass of our high $M_*$ AGN subsample is similar to that of non-active galaxies. However, AGNs in our low $M_*$ subsample are found in more massive halos than non-active galaxies. By excluding AGNs in galaxy groups from the clustering analysis, we find evidence that the result for low $M_*$ may be due a larger fraction of AGNs as satellites in massive halos.
In this paper we explore the clustering properties and the environment of the Extremely Red Objects (EROs; I-K>4mag) detected in a ~180arcmin^2 deep (Ks~20mag) Ks-band survey of a region within the Phoenix Deep Survey, an on-going multiwavelength program aiming to investigate the nature and the evolution of faint radio sources. Using our complete sample of 289 EROs brighter than Ks=20mag we estimate a statistically significant (~3.7sigma) angular correlation function signal with amplitude Aw=8.7^{+2.1}_{-1.7}x10^{-3} consistent with earlier work based on smaller samples. This amplitude suggests a clustering length in the range ro=12-17h^{-1}Mpc, implying that EROs trace regions of enhanced density. Using a novel method we further explore the association of EROs with galaxy overdensities by smoothing the K-band galaxy distribution using the matched filter algorithm of Postman et al. (1996) and then cross-correlating the resulting density maps with the ERO positions. Our analysis provides direct evidence that EROs are associated with overdensities at redshifts z>1. We also exploit the deep radio 1.4GHz data (limiting flux 60microJy) available to explore the association of EROs and faint radio sources and whether the two populations trace similar large scale structures. Cross-correlation of the two samples (after excluding 17EROs with radio counterparts) gives a 2sigma signal only for the sub-sample of high-z radio sources (z>0.6). Although the statistics are poor this suggests that it is the high-z radio sub-sample that traces similar structures with EROs.