Do you want to publish a course? Click here

Variable polarization in the optical afterglow of GRB 021004

117   0   0.0 ( 0 )
 Added by Evert Rol
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present polarimetric observations of the afterglow of gamma-ray burst (GRB) 021004, obtained with the Nordic Optical Telescope (NOT) and the Very Large Telescope (VLT) between 8 and 17 hours after the burst. Comparison among the observations shows a 45 degree change in the position angle from 9 hours after the burst to 16 hours after the burst, and comparison with published data from later epochs even shows a 90 degree change between 9 and 89 hours after the burst. The degree of linear polarization shows a marginal change, but is also consistent with being constant in time. In the context of currently available models for changes in the polarization of GRBs, a homogeneous jet with an early break time of t_b ~ 1 day provides a good explanation of our data. The break time is a factor 2 to 6 earlier than has been found from the analysis of the optical light curve. The change in the position angle of the polarization rules out a structured jet model for the GRB.



rate research

Read More

The CCD magnitudes in Johnson $B,V$ and Cousins $R$ and $I$ photometric passbands are determined for the bright long duration GRB 021004 afterglow from 2002 October 4 to 16 starting $sim$ 3 hours after the $gamma-$ray burst. Light curves of the afterglow emission in $B$,$V$,$R$ and $I$ passbands are obtained by combining these measurements with other published data. The earliest optical emission appears to originate in a revese shock. Flux decay of the afterglow shows a very uncommon variation relative to other well-observed GRBs. Rapid light variations, especially during early times ($Delta t < 2$ days) is superposed on an underlying broken power law decay typical of a jetted afterglow. The flux decay constants at early and late times derived from least square fits to the light curve are $0.99pm0.05$ and $2.0pm0.2$ respectively, with a jet break at around 7 day. Comparison with a standard fireball model indicates a total extinction of $E(B-V)=0.20$ mag in the direction of the burst. Our low-resolution spectra corrected for this extinction provide a spectral slope $beta = 0.6pm0.02$. This value and the flux decay constants agree well with the electron energy index $psim 2.27$ used in the model. The derived jet opening angle of about $7^{circ}$ implies a total emitted gamma-ray energy $E_{gamma} = 3.5times10^{50}$ erg at a cosmological distance of about 20 Gpc. Multiwavelength observations indicate association of this GRB with a star forming region, supporting the case for collapsar origin of long duration GRBs.
604 - K. Wiersema , S. Covino , K. Toma 2014
Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet, when measured minutes after the burst, and the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after burst in GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and negligable circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blastwave. Here we report the detection of circularly polarized optical light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.
We report 31 polarimetric observations of the afterglow of GRB 030329 with high signal-to-noise and high sampling frequency. The data imply that the afterglow magnetic field has small coherence length and is mostly random, probably generated by turbulence.
We present U,B,V,R_C,and I_C photometry of the optical afterglow of the gamma-ray burst GRB 021004 taken at the Nordic Optical Telescope between approximately eight hours and 30 days after the burst. This data is combined with an analysis of the 87 ksec Chandra X-ray observations of GRB 021004 taken at a mean epoch of 33 hours after the burst to investigate the nature of this GRB. We find an intrinsic spectral slope at optical wavelengths of beta_UH = 0.39 +/- 0.12 and an X-ray slope of beta_X = 0.94 +/- 0.03. There is no evidence for colour evolution between 8.5 hours and 5.5 days after the burst. The optical decay becomes steeper approximately five days after the burst. This appears to be a gradual break due to the onset of sideways expansion in a collimated outflow. Our data suggest that the extra-galactic extinction along the line of sight to the burst is between A_V = 0.3 and A_V = 0.5 and has an extinction law similar to that of the Small Magellanic Cloud. The optical and X-ray data are consistent with a relativistic fireball with the shocked electrons being in the slow cooling regime and having an electron index of p = 1.9 +/- 0.1. The burst occurred in an ambient medium that is homogeneous on scales larger than approximately 10e18 cm but inhomogeneous on smaller scales. The mean particle density is similar to what is seen for other bursts (0.1 < n < 100 cm^{-3}). Our results support the idea that the brightening seen approximately 0.1 days was due to interaction with a clumpy ambient medium within 10^{17} and 10^{18} cm of the progenitor. The agreement between the predicted optical decay and that observed approximately ten minutes after the burst suggests that the physical mechanism controlling the observed flux approximately ten minutes is the same as the one operating at t > 0.5 days.
We report UBVRI observations of the optical afterglow of the gamma-ray burst GRB 021004. We observed significant (10-20%) deviations from a power law decay on several time scales, ranging from a few hours down to 20-30 minutes. We also observed a significant color change starting ~1.5 days after the burst, confirming the spectroscopic results already reported by Matheson et al. (2002). We discuss these results in the context of several models that have recently been proposed to account for the anomalous photometric behavior of this event.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا