A Turbulent Origin for Flocculent Spiral Structure in Galaxies


Abstract in English

The flocculent structure of star formation in 7 galaxies has a Fourier transform power spectrum for azimuthal intensity scans with a power law slope that increases systematically from -1 at large scales to -1.7 at small scales. This is the same pattern as in the power spectra for azimuthal scans of HI emission in the Large Magellanic Clouds and for flocculent dust clouds in galactic nuclei. The steep part also corresponds to the slope of -3 for two-dimensional power spectra that have been observed in atomic and molecular gas surveys of the Milky Way and the Large and Small Magellanic Clouds. The same power law structure for star formation arises in both flocculent and grand design galaxies, which implies that the star formation process is the same in each. Fractal Brownian motion models that include discrete stars and an underlying continuum of starlight match the observations if all of the emission is organized into a global fractal pattern with an intrinsic 1D power spectrum having a slope between 1.3 and 1.8. We suggest that the power spectrum of optical light in galaxies is the result of turbulence, and that large-scale turbulent motions are generated by sheared gravitational instabilities which make flocculent spiral arms first and then cascade to form clouds and clusters on smaller scales.

Download