No Arabic abstract
A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescopes Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ``wide 300 square degree survey and a ``deep 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.
Weak gravitational lensing provides a unique method to directly map the dark matter in the universe and measure cosmological parameters. Current weak lensing surveys are limited by the atmospheric seeing from the ground and by the small field of view of existing space telescopes. We study how a future wide-field space telescope can measure the lensing power spectrum and skewness, and set constraints on cosmological parameters. The lensing sensitivity was calculated using detailed image simulations and instrumental specifications studied in earlier papers in this series. For instance, the planned SuperNova/Acceleration Probe (SNAP) mission will be able to measure the matter density parameter Omega_m and the dark energy equation of state parameter w with precisions comparable and nearly orthogonal to those derived with SNAP from supernovae. The constraints degrade by a factor of about 2 if redshift tomography is not used, but are little affected if the skewness only is dropped. We also study how the constraints on these parameters depend upon the survey geometry and define an optimal observing strategy.
The VST Optical Imaging of the CDFS and ES1 Fields (VOICE) Survey is a Guaranteed Time program carried out with the ESO/VST telescope to provide deep optical imaging over two 4 deg$^2$ patches of the sky centred on the CDFS and ES1 pointings. We present the cosmic shear measurement over the 4 deg$^2$ covering the CDFS region in the $r$-band using LensFit. Each of the four tiles of 1 deg$^2$ has more than one hundred exposures, of which more than 50 exposures passed a series of image quality selection criteria for weak lensing study. The $5sigma$ limiting magnitude in $r$- band is 26.1 for point sources, which is $sim$1 mag deeper than other weak lensing survey in the literature (e.g. the Kilo Degree Survey, KiDS, at VST). The photometric redshifts are estimated using the VOICE $u,g,r,i$ together with near-infrared VIDEO data $Y,J,H,K_s$. The mean redshift of the shear catalogue is 0.87, considering the shear weight. The effective galaxy number density is 16.35 gal/arcmin$^2$, which is nearly twice the one of KiDS. The performance of LensFit on such a deep dataset was calibrated using VOICE-like mock image simulations. Furthermore, we have analyzed the reliability of the shear catalogue by calculating the star-galaxy cross-correlations, the tomographic shear correlations of two redshift bins and the contaminations of the blended galaxies. As a further sanity check, we have constrained cosmological parameters by exploring the parameter space with Population Monte Carlo sampling. For a flat $Lambda$CDM model we have obtained $Sigma_8$ = $sigma_8(Omega_m/0.3)^{0.5}$ = $0.68^{+0.11}_{-0.15}$.
We present the results of an ongoing weak lensing survey conducted with the Subaru telescope whose initial goal is to locate and study the distribution of shear-selected structures or halos. Using a Suprime-cam imaging survey spanning 21.82 square degree, we present a catalog of 100 candidate halos located from lensing convergence maps. Our sample is reliably drawn from that subset of our survey area, (totaling 16.72 square degree) uncontaminated by bright stars and edge effects and limited at a convergence signal to noise ratio of 3.69. To validate the sample detailed spectroscopic measures have been made for 26 candidates using the Subaru multi-object spectrograph, FOCAS. All are confirmed as clusters of galaxies but two arise as the superposition of multiple clusters viewed along the line of sight. Including data available in the literature and an ongoing Keck spectroscopic campaign, a total of 41 halos now have reliable redshifts. For one of our survey fields, the XMM LSS (Pierre et al. 2004) field, we compare our lensing-selected halo catalog with its X-ray equivalent. Of 15 halos detected in the XMM-LSS field, 10 match with published X-ray selected clusters and a further 2 are newly-detected and spectroscopically confirmed in this work. Although three halos have not yet been confirmed, the high success rate within the XMM-LSS field (12/15) confirms that weak lensing provides a reliable method for constructing cluster catalogs, irrespective of the nature of the constituent galaxies or the intracluster medium.
We study the accuracy with which weak lensing measurements could be made from a future space-based survey, predicting the subsequent precisions of 3-dimensional dark matter maps, projected 2-dimensional dark matter maps, and mass-selected cluster catalogues. As a baseline, we use the instrumental specifications of the Supernova/Acceleration Probe (SNAP) satellite. We first compute its sensitivity to weak lensing shear as a function of survey depth. Our predictions are based on detailed image simulations created using `shapelets, a complete and orthogonal parameterization of galaxy morphologies. We incorporate a realistic redshift distribution of source galaxies, and calculate the average precision of photometric redshift recovery using the SNAP filter set to be Delta z=0.034. The high density of background galaxies resolved in a wide space-based survey allows projected dark matter maps with a rms sensitivity of 3% shear in 1 square arcminute cells. This will be further improved using a proposed deep space-based survey, which will be able to detect isolated clusters using a 3D lensing inversion techniques with a 1 sigma mass sensitivity of approximately 10^13 solar masses at z~0.25. Weak lensing measurements from space will thus be able to capture non-Gaussian features arising from gravitational instability and map out dark matter in the universe with unprecedented resolution.
The LSST survey will provide unprecedented statistical power for measurements of dark energy. Consequently, controlling systematic uncertainties is becoming more important than ever. The LSST observing strategy will affect the statistical uncertainty and systematics control for many science cases; here, we focus on weak lensing systematics. The fact that the LSST observing strategy involves hundreds of visits to the same sky area provides new opportunities for systematics mitigation. We explore these opportunities by testing how different dithering strategies (pointing offsets and rotational angle of the camera in different exposures) affect additive weak lensing shear systematics on a baseline operational simulation, using the $rho-$statistics formalism. Some dithering strategies improve systematics control at the end of the survey by a factor of up to $sim 3-4$ better than others. We find that a random translational dithering strategy, applied with random rotational dithering at every filter change, is the most effective of those strategies tested in this work at averaging down systematics. Adopting this dithering algorithm, we explore the effect of varying the area of the survey footprint, exposure time, number of exposures in a visit, and exposure to the Galactic plane. We find that any change that increases the average number of exposures (in filters relevant to weak lensing) reduces the additive shear systematics. Some ways to achieve this increase may not be favorable for the weak lensing statistical constraining power or for other probes, and we explore the relative trade-offs between these options given constraints on the overall survey parameters.