Do you want to publish a course? Click here

Clues on the evolution of the Carina dwarf spheroidal galaxy from the color distribution of its red giant stars

48   0   0.0 ( 0 )
 Added by Enrico V. Held
 Publication date 2003
  fields Physics
and research's language is English
 Authors L. Rizzi




Ask ChatGPT about the research

The thin red giant branch (RGB) of the Carina dwarf spheroidal galaxy appears at first sight quite puzzling and seemingly in contrast with the presence of several distinct bursts of star formation. In this Letter, we provide a measurement of the color spread of red giant stars in Carina based on new BVI wide-field observations, and model the width of the RGB by means of synthetic color-magnitude diagrams. The measured color spread, Sigma{V-I}=0.021 +/- 0.005, is quite naturally accounted for by the star-formation history of the galaxy. The thin RGB appears to be essentially related to the limited age range of its dominant stellar populations, with no need for a metallicity dispersion at a given age. This result is relatively robust with respect to changes in the assumed age-metallicity relation, as long as the mean metallicity over the galaxy lifetime matches the observed value ([Fe/H] = -1.91 +/- 0.12 after correction for the age effects). This analysis of photometric data also sets some constraints on the chemical evolution of Carina by indicating that the chemical abundance of the interstellar medium in Carina remained low throughout each episode of star formation even though these episodes occurred over many Gyr.



rate research

Read More

272 - B. Lemasle , V. Hill , E. Tolstoy 2011
The ages of individual Red Giant Branch stars (RGB) can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the 1st dredge-up). This means that they trace the ISM in the galaxy at the time the star formed, and hence the chemical enrichment history of the galaxy. CMD analysis has shown the Carina dwarf spheroidal (dSph) to have had an unusually episodic star formation history (SFH) which is expected to be reflected in the abundances of different chemical elements. We use the VLT-FLAMES spectrograph in HR mode (R~20000) to measure the abundances of several chemical elements in a sample of 35 RGB stars in Carina. We also combine these abundances with photometry to derive age estimates for these stars. This allows us to determine which of two distinct star formation (SF) episodes the stars in our sample belong to, and thus to define the relationship between SF and chemical enrichment during these two episodes. As is expected from the SFH, Carina contains two distinct populations of RGB stars: one old (>10 Gyr), which we have found to be metal-poor ([Fe/H]<-1.5), and alpha-rich ([Mg/Fe]>0.0); the other intermediate age (~2-6 Gyr), which we have found to have a metallicity range (-1.8<[Fe/H]<-1.2) with a large spread in [alpha/Fe] abundance, going from extremely low values ([Mg/Fe]<-0.3) to the same mean values as the older population (<[Mg/Fe]>~0.3). We show that the chemical enrichment history of the Carina dSph was different for each SF episode. The earliest was short (~2-3 Gyr) and resulted in the rapid chemical enrichment of the whole galaxy to [Fe/H] ~ -1.5 with both SNe II and SNe Ia contributions. The subsequent episode occured after a gap of ~3-4 Gyr and appears to have resulted in relatively little evolution in either [Fe/H] or [alpha/Fe].
The Carina dwarf spheroidal (dSph) galaxy is the only galaxy of this type that shows clearly episodic star formation separated by long pauses. Here we present metallicities for 437 radial velocity members of this Galactic satellite. We obtained medium-resolution spectroscopy with the multi-object spectrograph FLAMES at the ESO VLT. Our target red giants cover the entire projected surface area of Carina. Our spectra are centered at the near-infrared Ca triplet, which is a well-established metallicity indicator for old and intermediate-age red giants. The resulting data sample provides the largest collection of spectroscopically derived metallicities for a Local Group dSph to date. Four of our likely radial velocity members of Carina lie outside of this galaxys nominal tidal radius, supporting earlier claims of the possible existence of such stars beyond the main body of Carina. We find a mean metallicity of [Fe/H]=-1.7 dex. The formal full width at half maximum of the metallicity distribution is 0.92 dex, while the full range of metallicities spans ~-3.0<[Fe/H]<0.0 dex. The metallicity distribution might be indicative of several subpopulations. There appears to be a mild radial gradient such that more metal-rich populations are more centrally concentrated, matching a similar trend for an increasing fraction of intermediate-age stars. This as well as the photometric colors of the more metal-rich red giants suggest that Carina exhibits an age-metallicity relation. Indeed the age-metallicity degeneracy seems to conspire to form a narrow red giant branch despite the considerable spread in metallicity and wide range of ages. The metallicity distribution is not well-matched by a simple closed-box model of chemical evolution, but requires models that take into account also infall and outflows. (Abridged)
134 - K. Pilkington , B.K. Gibson 2012
We explore a range of chemical evolution models for the Local Group dwarf spheroidal (dSph) galaxy, Carina. A novel aspect of our work is the removal of the star formation history (SFH) as a `free parameter in the modeling, making use, instead, of its colour-magnitude diagram (CMD)-constrained SFH. By varying the relative roles of galactic winds, re-accretion, and ram-pressure stripping within the modeling, we converge on a favoured scenario which emphasises the respective roles of winds and re-accretion. While our model is successful in recovering most elemental abundance patterns, comparable success is not found for all the neutron capture elements. Neglecting the effects of stripping results in predicted gas fractions approximately two orders of magnitude too high, relative to that observed.
We present metallicities for 487 red giants in the Carina dwarf spheroidal (dSph) galaxy that were obtained from FLAMES low-resolution Ca triplet (CaT) spectroscopy. We find a mean [Fe/H] of -1.91 dex with an intrinsic dispersion of 0.25 dex, whereas the full spread in metallicities is at least one dex. The analysis of the radial distribution of metallicities reveals that an excess of metal poor stars resides in a region of larger axis distances. These results can constrain evolutionary models and are discussed in the context of chemical evolution in the Carina dSph.
136 - B. Lemasle , T. de Boer , V. Hill 2014
Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Despite recent progress, only the high metallicity end of Fornax field stars ([Fe/H]>-1.2 dex) has been sampled in larger number via high resolution spectroscopy. We want to better understand the full chemical evolution of this galaxy by better sampling the whole metallicity range, including more metal poor stars. We use the VLT-FLAMES multi-fibre spectrograph in high-resolution mode to determine the abundances of several alpha, iron-peak and neutron-capture elements in a sample of 47 individual Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We combine these abundances with accurate age estimates derived from the age probability distribution from the colour-magnitude diagram of Fornax. Similar to other dwarf spheroidal galaxies, the old, metal-poor stars of Fornax are typically alpha-rich while the young metal-rich stars are alpha-poor. In the classical scenario of the time delay between SNe II and SNe Ia, we confirm that SNe Ia started to contribute to the chemical enrichment at [Fe/H] between -2.0 and -1.8 dex. We find that the onset of SNe Ia took place between 12-10 Gyrs ago. The high values of [Ba/Fe], [La/Fe] reflect the influence of SNe Ia and AGB stars in the abundance pattern of the younger stellar population of Fornax. Our findings of low [alpha/Fe] and enhanced [Eu/Mg] are compatible with an initial mass function that lacks the most massive stars and with star formation that kept going on throughout the whole history of Fornax. We find that massive stars kept enriching the interstellar medium in alpha-elements, although they were not the main contributor to the iron enrichment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا