The majority of nearby early-type galaxies contains detectable amounts of emission-line gas at their centers. The emission-line ratios and gas kinematics potentially form a valuable diagnostic of the nuclear activity and gravitational potential well. The observed central gas velocity dispersion often exceeds the stellar velocity dispersion. This could be due to either the gravitational potential of a black hole or turbulent shocks in the gas. Here we try to discriminate between these two scenarios.
We analyze the intrinsic velocity dispersion properties of 648 star-forming galaxies observed by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, to explore the relation of intrinsic gas velocity dispersions with star formation rates (SFRs), SFR surface densities ($rm{Sigma_{SFR}}$), stellar masses and stellar mass surface densities ($rm{Sigma_{*}}$). By combining with high z galaxies, we found that there is a good correlation between the velocity dispersion and the SFR as well as $rm{Sigma_{SFR}}$. But the correlation between the velocity dispersion and the stellar mass as well as $rm{Sigma_{*}}$ is moderate. By comparing our results with predictions of theoretical models, we found that the energy feedback from star formation processes alone and the gravitational instability alone can not fully explain simultaneously the observed velocity-dispersion/SFR and velocity-dispersion/$rm{Sigma_{SFR}}$ relationships.
The distribution of early-type galaxy velocity dispersions, phi(sigma), is measured using a sample drawn from the SDSS database. Its shape differs significantly from that which one obtains by simply using the mean correlation between luminosity, L, and velocity dispersion, sigma, to transform the luminosity function into a velocity function: ignoring the scatter around the mean sigma-L relation is a bad approximation. An estimate of the contribution from late-type galaxies is also made, which suggests that phi(sigma) is dominated by early-type galaxies at velocities larger than ~ 200 km/s.
In this paper we study the molecular gas content of a representative sample of 67 of the most massive early-type galaxies in the local universe, drawn uniformly from the MASSIVE survey. We present new IRAM-30m telescope observations of 30 of these galaxies, allowing us to probe the molecular gas content of the entire sample to a fixed molecular-to-stellar mass fraction of 0.1%. The total detection rate in this representative sample is 25$^{+5.9}_{-4.4}$%, and by combining the MASSIVE and ATLAS$^{rm 3D}$ molecular gas surveys we find a joint detection rate of 22.4$^{+2.4}_{-2.1}$%. This detection rate seems to be independent of galaxy mass, size, position on the fundamental plane, and local environment. We show here for the first time that true slow rotators can host molecular gas reservoirs, but the rate at which they do so is significantly lower than for fast-rotators. Objects with a higher velocity dispersion at fixed mass (a higher kinematic bulge fraction) are less likely to have detectable molecular gas, and where gas does exist, have lower molecular gas fractions. In addition, satellite galaxies in dense environments have $approx$0.6 dex lower molecular gas-to-stellar mass ratios than isolated objects. In order to interpret these results we created a toy model, which we use to constrain the origin of the gas in these systems. We are able to derive an independent estimate of the gas-rich merger rate in the low-redshift universe. These gas rich mergers appear to dominate the supply of gas to ETGs, but stellar mass loss, hot halo cooling and transformation of spiral galaxies also play a secondary role.
We present velocity dispersion measurements for 69 faint early-type galaxies in the core of the Coma cluster, spanning -22.0<M_R<-17.5 mag. We examine the L-sigma relation for our sample and compare it to that of bright ellipticals from the literature. The distribution of the the faint early-type galaxies in the L-sigma plane follows the relation L ~ sigma^{2.01pm0.36}, which is significantly shallower from L ~ sigma^4 as defined for the bright ellipticals. While increased rotational support for fainter early-type galaxies could account for some of the difference in slope, we show that it cannot explain it. We also investigate the Colour-sigma relation for our Coma galaxies. Using the scatter in this relation, we constrain the range of galaxy ages as a function of their formation epoch for different formation scenarios. Assuming a strong coordination in the formation epoch of faint early-type systems in Coma, we find that most had to be formed at least 6 Gyrs ago and over a short 1 Gyr period.
We analyze 40 cosmological re-simulations of individual massive galaxies with present-day stellar masses of $M_{*} > 6.3 times 10^{10} M_{odot}$ in order to investigate the physical origin of the observed strong increase in galaxy sizes and the decrease of the stellar velocity dispersions since redshift $z approx 2$. At present 25 out of 40 galaxies are quiescent with structural parameters (sizes and velocity dispersions) in agreement with local early type galaxies. At z=2 all simulated galaxies with $M_* gtrsim 10^{11}M_{odot}$ (11 out of 40) at z=2 are compact with projected half-mass radii of $approx$ 0.77 ($pm$0.24) kpc and line-of-sight velocity dispersions within the projected half-mass radius of $approx$ 262 ($pm$28) kms$^{-1}$ (3 out of 11 are already quiescent). Similar to observed compact early-type galaxies at high redshift the simulated galaxies are clearly offset from the local mass-size and mass-velocity dispersion relations. Towards redshift zero the sizes increase by a factor of $sim 5-6$, following $R_{1/2} propto (1+z)^{alpha}$ with $alpha = -1.44$ for quiescent galaxies ($alpha = -1.12$ for all galaxies). The velocity dispersions drop by about one-third since $z approx 2$, following $sigma_{1/2} propto (1+z)^{beta}$ with $beta = 0.44$ for the quiescent galaxies ($beta = 0.37$ for all galaxies). The simulated size and dispersion evolution is in good agreement with observations and results from the subsequent accretion and merging of stellar systems at $zlesssim 2$ which is a natural consequence of the hierarchical structure formation. A significant number of the simulated massive galaxies (7 out of 40) experience no merger more massive than 1:4 (usually considered as major mergers). On average, the dominant accretion mode is stellar minor mergers with a mass-weighted mass-ratio of 1:5. (abridged)