Do you want to publish a course? Click here

On the Relationship between Cooling Flows and Bubbles

91   0   0.0 ( 0 )
 Added by Ian G. McCarthy
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

A common feature of the X-ray bubbles observed in Chandra images of some cooling flow clusters is that they appear to be surrounded by bright, cool shells. Temperature maps of a few nearby luminous clusters reveal that the shells consist of the coolest gas in the clusters -- much cooler than the surrounding medium. Using simple models, we study the effects of this cool emission on the inferred cooling flow properties of clusters. We find that the introduction of bubbles into model clusters that do NOT have cooling flows results in temperature and surface brightness profiles that resemble those seen in nearby cooling flow clusters. They also approximately reproduce the recent XMM-Newton and Chandra observations of a high minimum temperature of 1-3 keV. Hence, bubbles, if present, must be taken into account when inferring the physical properties of the ICM. In the case of some clusters, bubbles may account entirely for these observed features, calling into question their designation as clusters with cooling flows. However, since not all nearby cooling flow clusters show bubble-like features, we suggest that there may be a diverse range of physical phenomena that give rise to the same observed features.



rate research

Read More

Several galaxy clusters are known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths. It suggests that the AGN precessing jets play a role in the formation of the misaligned bubbles. Also, X-ray spectra reveal that typically these systems are also able to supress cooling flows, predicted theoretically. The absence of cooling flows in galaxy clusters has been a mistery for many years since numerical simulations and analytical studies suggest that AGN jets are highly energetic, but are unable to redistribute it at all directions. We performed 3D hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, which dynamics is coupled to a NFW dark matter gravitational potential. Radiative cooling has been taken into account and the cooling flow problem was studied. We found that precession is responsible for multiple pairs of bubbles, as observed. The misaligned bubbles rise up to scales of tens of kiloparsecs, where the thermal energy released by the jets are redistributed. After $sim 150$ Myrs, the temperature of the gas within the cavities is kept of order of $sim 10^7$ K, while the denser plasma of the intracluster medium at the central regions reaches $T sim 10^5$ K. The existence of multiple bubbles, at diferent directions, result in an integrated temperature along the line of sight much larger than the simulations of non-precessing jets. This result is in agreement with the observations. The simulations reveal that the cooling flows cessed $sim 50 - 70$ Myr after the AGN jets are started.
The observed cooling rate of hot gas in clusters is much lower than that inferred from the gas density profiles. This suggests that the gas is being heated by some source. We use an adaptive-mesh refinement code (FLASH) to simulate the effect of multiple, randomly positioned, injections of thermal energy within 50 kpc of the centre of an initially isothermal cluster with mass M_200=3x10^(14) Msol and kT=3.1 keV. We have performed eight simulations with spherical bubbles of energy generated every 10^8 years, over a total of 1.5 Gyr. Each bubble is created by injecting thermal energy steadily for 10^7 years; the total energy of each bubble ranges from 0.1--3x10^(60) erg, depending on the simulation. We find that 2x10^(60) erg per bubble (corresponding to a average power of 6.3x10^(44) erg/s) effectively balances energy loss in the cluster and prevents the accumulation of gas below kT=1 keV from exceeding the observational limits of 30 Msol/yr. This injection rate is comparable to the radiated luminosity of the cluster, and the required energy and periodic timescale of events are consistent with observations of bubbles produced by central AGN in clusters. The effectiveness of this process depends primarily on the total amount of injected energy and the initial location of the bubbles, but is relatively insensitive to the exact duty cycle of events.
The study of topology in solids is undergoing a renaissance following renewed interest in the properties of ferroic domain walls as well as recent discoveries regarding topological insulators and skyrmionic lattices. Each of these systems possess a property that is `protected in a symmetry sense, and is defined rigorously using a branch of mathematics known as topology. In this article we review the formal definition of topological defects as they are classified in terms of homotopy theory, and discuss the precise symmetry-breaking conditions that lead to their formation. We distinguish topological defects from geometric defects, which arise from the details of the stacking or structure of the material but are not protected by symmetry. We provide simple material examples of both topological and geometric defect types, and discuss the implications of the classification on the resulting material properties.
Recently Pasetto et al. have proposed a new method to derive a convection theory appropriate for the implementation in stellar evolution codes. Their approach is based on the simple physical picture of spherical bubbles moving within a potential flow in dynamically unstable regions, and a detailed computation of the bubble dynamics. Based on this approach the authors derive a new theory of convection which is claimed to be parameter free, non-local and time-dependent. This is a very strong claim, as such a theory is the holy grail of stellar physics. Unfortunately we have identified several distinct problems in the derivation which ultimately render their theory inapplicable to any physical regime. In addition we show that the framework of spherical bubbles in potential flows is unable to capture the essence of stellar convection, even when equations are derived correctly.
We derive X-ray mass, luminosity, and temperature profiles for 45 galaxy clusters to explore relationships between halo mass, AGN feedback, and central cooling time. We find that radio--mechanical feedback power (referred to here as AGN power) in central cluster galaxies correlates with halo mass as P$_{rm mech}$ $propto$ M$^{1.55pm0.26}$, but only in halos with central atmospheric cooling times shorter than 1 Gyr. The trend of AGN power with halo mass is consistent with the scaling expected from a self-regulating AGN feedback loop, as well as with galaxy and central black hole co-evolution along the $M_{rm BH} - sigma$ relation. AGN power in clusters with central atmospheric cooling times longer than $sim 1$ Gyr typically lies two orders of magnitude below those with shorter central cooling times. Galaxies centred in clusters with long central cooling times nevertheless experience ongoing and occasionally powerful AGN outbursts. We further investigate the impact of feedback on cluster scaling relations. We find $L-T$, and $M-T$ relations in clusters with direct evidence of feedback which are steeper than self-similar, but not atypical compared to previous studies of the full cluster population. While the gas mass rises, the stellar mass remains nearly constant with rising total mass, consistent with earlier studies. This trend is found regardless of central cooling time, implying tight regulation of star formation in central galaxies as their halos grew, and long-term balance between AGN heating and atmospheric cooling. Our scaling relations are presented in forms that can be incorporated easily into galaxy evolution models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا