No Arabic abstract
Using simple infrared color selection, 2MASS has found a large number of red, previously unidentified, radio-quiet QSOs. Although missed by UV/optical surveys, the 2MASS QSOs have K-band luminosities that are comparable to classical QSOs. This suggests the possible discovery of a previously predicted large population of dust-obscured radio-quiet QSOs. We present the results of an imaging survey of 29 2MASS QSOs observed with WFPC2 onboard the Hubble Space Telescope. I-band images, which benefit from the relative faintness of the nuclei at optical wavelengths, are used to characterize the host galaxies, measure the nuclear contribution to the total observed I-band emission, and to survey the surrounding environments. The 2MASS QSOs are found to lie in galaxies with a variety of morphologies, luminosities, and dynamical states, not unlike those hosting radio-quiet PG QSOs. Our analysis suggests that the extraordinary red colors of the 2MASS QSOs are caused by extinction of an otherwise typical QSO spectrum due to dust near the nucleus.
We present and discuss optical imaging of 76 AGN which represent the 2MASS-selected sample for z<0.3, from a full list of 243. They are found to have dust-obscured nuclei, residing in host galaxies that show a high fraction (>70%) of tidal interactions. The derived luminosities of the AGN and host galaxies are similar to traditionally-selected AGN, and they may comprise some 40% of the total AGN population at low redshift. We have measured a number of host galaxy properties, and discuss their distributions and interrelations. We compare the 2MASS AGN with optically selected samples and the IRAS-selected galaxy samples, and discuss the differences in terms of merger processes and initial conditions.
We have obtained optical imaging with the Canada France Hawaii Telescope (CFHT) of 21 2MASS-selected QSOs of redshift greater than 0.3. This paper complements the sample of lower redshift 2MASS QSOs previously published. The QSOs have higher overall and nuclear luminosity, bluer colours, and higher ratio of nuclear to host flux than the lower redshift sample. From these and other properties, we argue that the sample is consistent with the emergence of the AGN from dusty starbursts following major tidal interactions between galaxies.
Combining radio observations with optical and infrared color selection -- demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars -- we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria -- J-K>1.7, R-K>4.0 -- yield a ~50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that >~ 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K <= 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of >20-30%.
{Aims.} We present the main results of an imaging survey of possible young massive clusters (YMC) in M31 performed with the Wide Field and Planetary Camera2 (WFPC2) on the Hubble Space Telescope (HST). We present the images and color magnitude diagrams (CMDs) of all of our targets. {Methods.} The reddening, age and, metallicity of the clusters were estimated by comparing the observed CMDs and luminosity functions with theoretical models. Stellar masses were estimated by comparison with theoretical models in the log(Age) vs. absolute integrated magnitude plane. {Results.} Nineteen of the twenty surveyed candidates were confirmed to be real star clusters. Three of the clusters were found not to be good YMC candidates from newly available integrated spectroscopy and were in fact found to be old from their CMD. Of the remaining sixteen clusters, fourteen have ages between 25 Myr and 280 Myr, two have older ages than 500 Myr (lower limits). By including ten other YMC with HST photometry from the literature we have assembled a sample of 25 clusters younger than 1 Gyr, with mass ranging from 0.6 x 10^4 M_sun to 6 x 10^4 M_sun, with an average of ~ 3 x 10^4 M_sun. {Conclusions.} The clusters considered here are confirmed to have masses significantly higher than Galactic open clusters in the same age range. Our analysis indicates that YMCs are relatively common in all the largest star-forming galaxies of the Local Group.
HST is used to study the power sources and the interaction-induced tidal disturbances within the most luminous galaxies in the local universe -- the Ultra-Luminous IR Galaxies (ULIRGs) -- through the use of I-band images with WFPC2 and H-band images with NICMOS. Such images are probing for the first time the fine-scale structures in the strong collision-disturbed morphologies of these rare and exotic galaxies.