Do you want to publish a course? Click here

Surprisingly Little O VI Emission Arises in the Local Bubble

57   0   0.0 ( 0 )
 Added by Robin L. Shelton
 Publication date 2003
  fields Physics
and research's language is English
 Authors R. L. Shelton




Ask ChatGPT about the research

This paper reports the first study of the O VI resonance line emission (1032, 1038 Angstroms) originating in the Local Bubble (or Local Hot Bubble) surrounding the solar neighborhood. In spite of the fact that O VI absorption within the Local Bubble has been observed, no resonance line emission was detected during our 230 ksec Far Ultraviolet Spectroscopic Explorer observation toward a ``shadowing filament in the southern Galactic hemisphere. As a result, tight 2 sigma upper limits are set on the intensities in the 1032 and 1038 Angstrom emission lines: 500 and 530 photons cm^{-2} s^{-1} sr^{-1}, respectively. These values place strict constraints on models and simulations. They suggest that the O VI-bearing plasma and the X-ray emissive plasma reside in distinct regions of the Local Bubble and are not mixed in a single plasma, whether in equilibrium with T ~ 10^6 K or highly overionized with T ~ 4 to 6 x 10^4 K. If the line of sight intersects multiple cool clouds within the Local Bubble, then the results also suggest that hot/cool transition zones differ from those in current simulations. With these intensity upper limits, we establish limits on the electron density, thermal pressure, pathlength, and cooling timescale of the O VI-bearing plasma in the Local Bubble. Furthermore, the intensity of O VI resonance line doublet photons originating in the Galactic thick disk and halo is determined (3500 to 4300 photons cm^{-2} s^{-1} sr^{-1}), and the electron density, thermal pressure, pathlength, and cooling timescale of its O VI-bearing plasma are calculated. The pressure in the Galactic halos O VI-bearing plasma (3100 to 3800 K cm^{-3}) agrees with model predictions for the total pressure in the thick disk/lower halo. We also report the results of searches for other emission lines.



rate research

Read More

A significant fraction of baryons in galaxies are in the form of diffuse gas of the circumgalactic medium (CGM). One critical component of the multi-phases of CGM, the so-called coronal warm-hot phase gas ($rm 10^{5}-10^{6}$ K) traced by O VI 1031.93, 1037.62 r{A} resonance lines, has rarely been detected in emission from galaxy halos other than Milky Way. Here we report four additional detections of O VI emission gas in the halos of nearby edge-on galaxies, NGC 4631 and NGC 891, using archival Far Ultraviolet Spectroscopic Explorer data and an updated data pipeline. We find the most intense O VI emission to be from fields forming a vertical line near the center of NGC 4631, despite the close proximity to the disk of two other fields. The detected O VI emission surface brightness are about 1.1$pm 0.3$ $times$ $10^{-18}$ to 3.9$pm0.8$ $times$ $10^{-18}$ ergs s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$. The spatial distribution of the five 30 $times$ 30 O VI detection fields in NGC 4631 can be interpreted as the existence of filamentary structures of more intense O VI emission superimposed within a diffuse and faint O VI halo in star-forming galaxies. Volume-filled O VI emission mapping is greatly needed to determine the structure and prevalence of warm-hot gas and the role it plays in the cycling of gas between the galaxy disk and the halo. Finally, we present the sensitivity of future funded and proposed UV missions (LUVOIR-A, LUVOIR-B, CETUS, and Aspera) to the detection of diffuse and faint O VI emission in nearby galaxy halos.
85 - Jayant Murthy 2001
We have examined 426 {it Voyager} fields distributed across the sky for ion{O}{6} ($lambda lambda$ 1032/1038 AA) emission from the Galactic diffuse interstellar medium. No such emission was detected in any of our observed fields. Our most constraining limit was a 90% confidence upper limit of 2600 phunit on the doublet emission in the direction (l, b) = (117fdegree3, 50fdegree6). Combining this with an absorption line measurement in nearly the same direction allows us to place an upper limit of 0.01 cm$^{-3}$ on the electron density of the hot gas in this direction. We have placed 90% confidence upper limits of less than or equal to 10,000 phunit on the ion{O}{6} emission in 16 of our 426 observations.
We report the first Far Ultraviolet Spectroscopic Explorer (FUSE) measurements of diffuse O VI (lambda,lambda 1032,1038) emission from the general diffuse interstellar medium outside of supernova remnants or superbubbles. We observed a 30arcsec x 30arcsec region of the sky centered at l = 315 and b = -41. From the observed intensities (2930+/-290(random)+/-410(systematic) and 1790+/-260(random)+/-250(systematic) photons/cm/cm/s/sr in the 1032 and 1038 Angstrom emission lines, respectively), derived equations, and assumptions about the source location, we calculate the intrinsic intensity, electron density, thermal pressure, and emitting depth. The intensities are too large for the emission to originate solely in the Local Bubble. Thus, we conclude that the Galactic thick disk and lower halo also contribute. High velocity clouds are ruled out because there are none near the pointing direction. The calculated emitting depth is small, indicating that the O VI-bearing gas fills a small volume. The observations can also be used to estimate the cooling rate of the hot interstellar medium and constrain models. The data also yield the first intensity measurement of the C II 3s2 S1/2 to 2p2 P3/2 emission line at 1037 Angstroms and place upper limits on the intensities of ultraviolet line emission from C I, C III, Si II, S III, S IV, S VI, and Fe III.
63 - R. Skalidis , V. Pelgrims 2019
It has not been shown so far whether the diffuse Galactic polarized emission at frequencies relevant for cosmic microwave background (CMB) studies originates from nearby or more distant regions of our Galaxy. This questions previous attempts that have been made to constrain magnetic field models at local and large scales. The scope of this work is to investigate and quantify the contribution of the dusty and magnetized local interstellar medium to the observed emission that is polarized by thermal dust. We used stars as distance candles and probed the line-of-sight submillimeter polarization properties by comparing the emission that is polarized by thermal dust at submillimeter wavelengths and the optical polarization caused by starlight. We provide statistically robust evidence that at high Galactic latitudes ($|b| geq 60^circ$), the $353$ GHz polarized sky as observed by textit{Planck} is dominated by a close-by magnetized structure that extends between $200$ and $300$ pc and coincides with the shell of the Local Bubble. Our result will assist modeling the magnetic field of the Local Bubble and characterizing the CMB Galactic foregrounds.
We present a survey of diffuse O VI emission in the interstellar medium obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Spanning 5.5 years of FUSE observations, from launch through 2004 December, our data set consists of 2925 exposures along 183 sight lines, including all of those with previously-published O VI detections. The data were processed using an implementation of CalFUSE v3.1 modified to optimize the signal-to-noise ratio and velocity scale of spectra from an aperture-filling source. Of our 183 sight lines, 73 show O VI 1032 emission, 29 at > 3-sigma significance. Six of the 3-sigma features have velocities |v_LSR| > 120 km/s, while the others have |v_LSR| < 50 km/s. Measured intensities range from 1800 to 9100 LU, with a median of 3300 LU. Combining our results with published O VI absorption data, we find that an O VI-bearing interface in the local ISM yields an electron density n_e = 0.2--0.3 cm^-3^ and a path length of 0.1 pc, while O VI-emitting regions associated with high-velocity clouds in the Galactic halo have densities an order of magnitude lower and path lengths two orders of magnitude longer. Though the O VI intensities along these sight lines are similar, the emission is produced by gas with very different properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا