No Arabic abstract
We present the X-ray properties of a sample of 17 radio sources observed with the Chandra X-ray Observatory as part of a project aimed at studying the X-ray emission from their radio jets. In this paper, we concentrate on the X-ray properties of the unresolved cores. The sample includes 16 quasars (11 core-dominated and 5 lobe-dominated) in the redshift range z=0.30--1.96, and one low-power radio-galaxy at z=0.064. No diffuse X-ray emission is present around the cores of the quasars, except for the nearby low-power galaxy that has diffuse emission on a scale and with a luminosity consistent with other FRIs. No high-amplitude, short-term variability is detected within the relatively short Chandra exposures. However, 1510-089 shows low-amplitude flux changes with a timescale of $sim$25 minutes. The X-ray spectra of the quasar cores are generally well described by a single power law model with Galactic absorption. However, in six quasars we find soft X-ray excess emission below 1.6 keV. Interestingly, we detect an Fe K-shell emission line, consistent with fluorescent Kalpha emission from cold Iron, in one lobe- and two core-dominated sources. The average X-ray photon index for the quasars in the sample is Gamma=1.66 and dispersion, sigma=0.23. The average spectral slope for our sample is flatter than the slope found for radio-quiet quasars and for radio-loud AGNs with larger jet orientations; this indicates that beaming affects the X-ray emission from the cores in our sample of quasars.
We present Chandra detections of x-ray emission from the AGN in two giant Low Surface Brightness (LSB) galaxies, UGC 2936 and UGC 1455. Their x-ray luminosities are 1.8times10^{42} ergs/s and 1.1times10^{40} ergs/s respectively. Of the two galaxies, UGC 2936 is radio loud. Together with another LSB galaxy UGC 6614 (XMM archival data) both appear to lie above the X-ray-Radio fundamental plane and their AGN have black hole masses that are low compared to similar galaxies lying on the correlation. However, the bulges in these galaxies are well developed and we detect diffuse x-ray emission from four of the eight galaxies in our sample. Our results suggest that the bulges of giant LSB galaxies evolve independently of their halo dominated disks which are low in star formation and disk dynamics. The centers follow an evolutionary path similar to that of bulge dominated normal galaxies on the Hubble Sequence but the LSB disks remain unevolved. Thus the bulge and disk evolution are decoupled and so whatever star formation processes produced the bulges did not affect the disks.
We present new BeppoSAX LECS, MECS, and PDS observations of four flat-spectrum radio quasars (FSRQ) having effective spectral indices alpha_ro and alpha_ox typical of high-energy peaked BL Lacs. Our sources have X-ray-to-radio flux ratios on average ~ 70 times larger than ``classical FSRQ and lie at the extreme end of the FSRQ X-ray-to-radio flux ratio distribution. The collected data cover the energy range 0.1 - 10 keV (observers frame), reaching ~ 100 keV for one object. The BeppoSAX band in one of our sources, RGB J1629+4008, is dominated by synchrotron emission peaking at ~ 2 x 10^16 Hz, as also shown by its steep (energy index alpha_x ~ 1.5) spectrum. This makes this object the FIRST known FSRQ whose X-ray emission is not due to inverse Compton radiation. Two other sources display a flat BeppoSAX spectrum (alpha_x ~ 0.7), with weak indications of steepening at low X-ray energies. The combination of BeppoSAX and ROSAT observations, (non-simultaneous) multifrequency data, and a synchrotron inverse Compton model suggest synchrotron peak frequencies ~ 10^15 Hz, although a better coverage of their spectral energy distributions is needed to provide firmer values. If confirmed, these values would be typical of ``intermediate BL Lacs for which the synchrotron and inverse Compton components overlap in the BeppoSAX band. Our sources, although firmly in the radio-loud regime, have powers more typical of high-energy peaked BL Lacs than of FSRQ, and indeed their radio powers put them near the low-luminosity end of the FSRQ luminosity function. We discuss this in terms of an anti-correlation between synchrotron peak frequency and total power, based on physical arguments, and also as possibly due to a selection effect.
We present a catalog of 9017 X-ray sources identified in Chandra observations of a 2 by 0.8 degree field around the Galactic center. We increase the number of known X-ray sources in the region by a factor of 2.5. The catalog incorporates all of the ACIS-I observations as of 2007 August, which total 2.25 Msec of exposure. At the distance to the Galactic center (8 kpc), we are sensitive to sources with luminosities >4e32 erg/s (0.5-8.0 keV; 90% confidence) over an area of one square degree, and up to an order of magnitude more sensitive in the deepest exposure (1.0 Msec) around Sgr A*. The positions of 60% of our sources are accurate to <1 (95% confidence), and 20% have positions accurate to <0.5. We search for variable sources, and find that 3% exhibit flux variations within an observation, 10% exhibit variations from observation-to-observation. We also find one source, CXOUGC J174622.7-285218, with a periodic 1745 s signal (1.4% chance probability), which is probably a magnetically-accreting cataclysmic variable. We compare the spatial distribution of X-ray sources to a model for the stellar distribution, and find 2.8 sigma evidence for excesses in the numbers of X-ray sources in the region of recent star formation encompassed by the Arches, Quintuplet, and Galactic center star clusters. These excess sources are also seen in the luminosity distribution of the X-ray sources, which is flatter near the Arches and Quintuplet than elsewhere in the field. These excess point sources, along with a similar longitudinal asymmetry in the distribution of diffuse iron emission that has been reported by other authors, probably have their origin in the young stars that are prominent at l~0.1 degree.
The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected in excess of 1000 sources in the ~20-100 keV band during its surveys of the sky over the past 17 years. We obtained 5 ks observations of 15 unclassified IGR sources with the Chandra X-ray Observatory in order to localize them, to identify optical/IR counterparts, to measure their soft X-ray spectra, and to classify them. For 10 of the IGR sources, we detect Chandra sources that are likely (or in some cases certain) to be the counterparts. IGR J18007-4146 and IGR J15038-6021 both have Gaia parallax distances, placing them at 2.5+0.5-0.4 and 1.1+1.5-0.4 kpc, respectively. We tentatively classify both of them as intermediate polar-type Cataclysmic Variables. Also, IGR J17508-3219 is likely to be a Galactic source, but it is unclear if it is a Dwarf Nova or another type of transient. For IGR J17118-3155, we provide a Chandra localization, but it is unclear if the source is Galactic or extragalactic. Based on either near-IR/IR colors or the presence of extended near-IR emission, we classify four sources as Active Galactic Nuclei (IGR J16181-5407, IGR J16246-4556, IGR J17096-2527, and IGR J19294+1327), and IGR J20310+3835 and IGR J15541-5613 are AGN candidates. In addition, we identified an AGN in the INTEGRAL error circle of IGR J16120-3543 that is a possible counterpart.
We report the results of a programme of dual-epoch Chandra ACIS-S observations of five ultraluminous X-ray sources (ULXs) in nearby spiral galaxies. All five ULXs are detected as unresolved, point-like X-ray sources by Chandra, though two have faded below the 10^39 erg/s luminosity threshold used to first designate these sources as ULXs. Using this same criterion, we detect three further ULXs within the imaged regions of the galaxies. The ULXs appear to be related to the star forming regions of the galaxies, indicating that even in ``normal spiral galaxies the ULX population is predominantly associated with young stellar populations. A detailed study of the Chandra ACIS-S spectra of six of the ULXs shows that five are better described by a powerlaw continuum than a multi-colour disc blackbody model, though there is evidence for additional very soft components to two of the powerlaw continua. The measured photon indices in four out of five cases are consistent with the low/hard state in black hole binaries, contrary to the suggestion that powerlaw-dominated spectra of ULXs originate in the very high state. A simple interpretation of this is that we are observing accretion onto intermediate-mass black holes, though we might also be observing a spectral state unique to very high mass accretion rates in stellar-mass black hole systems. Short-term flux variability is only detected in one of two epochs for two of the ULXs, with the lack of this characteristic arguing that the X-ray emission of this sample of ULXs is not dominated by relativistically-beamed jets. The observational characteristics of this small sample suggest that ULXs are a distinctly heterogeneous source class.