Do you want to publish a course? Click here

First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Interpretation of the TT and TE Angular Power Spectrum Peaks

80   0   0.0 ( 0 )
 Added by N. Odegard
 Publication date 2003
  fields Physics
and research's language is English
 Authors L. Page




Ask ChatGPT about the research

The CMB has distinct peaks in both its temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE). From the WMAP data we find the first peak in the temperature spectrum at l = 220.1 +- 0.8 with an amplitude of 74.7 +- 0.5 microK; the first trough at l = 411.7 +- 3.5 with an amplitude of 41.0 +- 0.5 microK; and the second peak at l = 546 +- 10 with an amplitude of 48.8 +- 0.9 microK. The TE spectrum has an antipeak at l = 137 +- 9 with a cross-power of -35 +- 9 microK^2, and a peak at l = 329 +- 19 with cross-power 105 +- 18 microK^2. All uncertainties are 1 sigma and include calibration and beam errors. An intuition for how the data determine the cosmological parameters may be gained by limiting ones attention to a subset of parameters and their effects on the peak characteristics. We interpret the peaks in the context of a flat adiabatic LambdaCDM model with the goal of showing how the cosmic baryon density, Omega_b h^2, matter density, Omega_m h^2, scalar index, n_s, and age of the universe are encoded in their positions and amplitudes. To this end, we introduce a new scaling relation for the TE antipeak-to-peak amplitude ratio and recompute known related scaling relations for the TT spectrum in light of the WMAP data. From the scaling relations, we show that WMAPs tight bound on Omega_b h^2 is intimately linked to its robust detection of the first and second peaks of the TT spectrum.



rate research

Read More

74 - G. Hinshaw 2003
We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking ~700 known bright sources from the maps, we estimate residual sources contribute ~3500 uK^2 at 41 GHz, and ~130 uK^2 at 94 GHz, to the power spectrum l*(l+1)*C_l/(2*pi) at l=1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to l~350. The spectrum clearly exhibits a first acoustic peak at l=220 and a second acoustic peak at l~540 and it provides strong support for adiabatic initial conditions. Kogut et al. (2003) analyze the C_l^TE power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by ~30% on degree angular scales, due to secondary scattering.
82 - A. Kogut 2003
The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are present in all WMAP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales theta < 5 deg, the WMAP data show the temperature-polarization correlation expected from adiabatic perturbations in the temperature power spectrum. The data for l > 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta > 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 < z_r < 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit LambdaCDM model, with best fit value tau = 0.17 +- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.
(Abridged) The 7-year WMAP data and improved astrophysical data rigorously test the standard cosmological model and its extensions. By combining WMAP with the latest distance measurements from BAO and H0 measurement, we determine the parameters of the simplest LCDM model. The power-law index of the primordial power spectrum is n_s=0.968+-0.012, a measurement that excludes the scale-invariant spectrum by 99.5%CL. The other parameters are also improved from the 5-year results. Notable examples of improved parameters are the total mass of neutrinos, sum(m_nu)<0.58eV, and the effective number of neutrino species, N_eff=4.34+0.86-0.88. We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis. We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z=1090 and the dominance of adiabatic scalar fluctuations. With the 7-year TB power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved to Delta(alpha)=-1.1+-1.4(stat)+-1.5(syst) degrees. We report significant detections of the SZ effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data. However, it is a factor of 0.5 to 0.7 times the predictions from universal profile of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically-expected SZ power spectrum recently measured by the South Pole Telescope collaboration.
108 - C. Bennett 2003
Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the CMB from foreground emission. We define masks that excise regions of high foreground emission. The effectiveness of template fits to remove foreground emission from the WMAP data is examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We construct a model of the Galactic emission components. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (beta ~ -2.5) near star-forming regions, especially in the plane, and steepest (beta ~ -3) in the halo. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to beta < -3. The modeled thermal dust spectral index is also steep in the WMAP bands, with beta ~ 2.2. Microwave and H alpha measurements of the ionized gas agree. Spinning dust emission is limited to < ~5% of the Ka-band foreground emission. A catalog of 208 point sources is presented. Derived source counts suggest a contribution to the anisotropy power from unresolved sources of (15.0 +- 1.4) 10^{-3} microK^2 sr at Q-band and negligible levels at V-band and W-band.
62 - E. Komatsu 2003
We present limits to the amplitude of non-Gaussian primordial fluctuations in the WMAP 1-year cosmic microwave background sky maps. A non-linear coupling parameter, f_NL, characterizes the amplitude of a quadratic term in the primordial potential. We use two statistics: one is a cubic statistic which measures phase correlations of temperature fluctuations after combining all configurations of the angular bispectrum. The other uses the Minkowski functionals to measure the morphology of the sky maps. Both methods find the WMAP data consistent with Gaussian primordial fluctuations and establish limits, -58<f_NL<134, at 95% confidence. There is no significant frequency or scale dependence of f_NL. The WMAP limit is 30 times better than COBE, and validates that the power spectrum can fully characterize statistical properties of CMB anisotropy in the WMAP data to high degree of accuracy. Our results also validate the use of a Gaussian theory for predicting the abundance of clusters in the local universe. We detect a point-source contribution to the bispectrum at 41 GHz, b_src = (9.5+-4.4) X 1e-5 uK^3 sr^2, which gives a power spectrum from point sources of c_src = (15+-6) X 1e-3 uK^2 sr in thermodynamic temperature units. This value agrees well with independent estimates of source number counts and the power spectrum at 41 GHz, indicating that b_src directly measures residual source contributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا