Do you want to publish a course? Click here

Extrinsic Radio Variability of JVAS/CLASS Gravitational Lenses

79   0   0.0 ( 0 )
 Added by L. V. E. Koopmans
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present flux-ratio curves of the fold and cusp (i.e. close multiple) images of six JVAS/CLASS gravitational lens systems. The data were obtained over a period of 8.5 months in 2001 with the Multi-Element Radio-Linked Interferometer Network (MERLIN) at 5-GHz with 50 mas resolution, as part of a MERLIN Key-Project. Even though the time delays between the fold and cusp images are small (<~1 day) compared to the time-scale of intrinsic source variability, all six lens systems show evidence that suggests the presence of extrinsic variability. In particular, the cusp images of B2045+265 -- regarded as the strongest case of the violation of the cusp relation (i.e. the sum of the magnifications of the three cusp images add to zero) -- show extrinsic variations in their flux-ratios up to ~40 percent peak-to-peak on time scales of several months. Its low Galactic latitude of b=-10 degree and a line-of-sight toward the Cygnus superbubble region suggest that Galactic scintillation is the most likely cause. The cusp images of B1422+231 at b=+69 degree do not show strong extrinsic variability. Galactic scintillation can therefore cause significant scatter in the cusp and fold relations of some radio lens systems (up to 10 percent rms), even though these relations remain violated when averaged over a <~1 year time baseline.



rate research

Read More

We present the optical spectra of four newly discovered gravitational lenses from the Cosmic Lens All-Sky Survey (CLASS). These observations were carried out using the Low Resolution Imaging Spectrograph on the W. M. Keck-I Telescope as part of a program to study galaxy-scale gravitational lenses. From our spectra we found the redshift of the background source in CLASS B0128+437 (z_s=3.1240+-0.0042) and the lensing galaxy redshifts in CLASS B0445+123 (z_l=0.5583+-0.0003) and CLASS B0850+054 (z_l=0.5883+-0.0006). Intriguingly, we also discovered that CLASS B0631+519 may have two lensing galaxies (z_l,1=0.0896+-0.0001, z_l,2=0.6196+-0.0004). We also found a single unidentified emission line from the lensing galaxy in CLASS B0128+437 and the lensed source in CLASS B0850+054. We find the lensing galaxies in CLASS B0445+123 and CLASS B0631+519 (l,2) to be early-type galaxies with Einstein Radii of 2.8-3.0 h^{-1} kpc. The deflector in CLASS B0850+054 is a late-type galaxy with an Einstein Radius of 1.6 h^{-1} kpc.
104 - N. Jackson , I.W.A. Browne 2006
Many lens surveys have hitherto used observations of large samples of background sources to select the small minority which are multiply imaged by lensing galaxies along the line of sight. Recently surveys such as SLACS and OLS have improved the efficiency of surveys by pre-selecting double-redshift systems from SDSS. We explore other ways to improve survey efficiency by optimum use of astrometric and morphological information in existing large-scale optical and radio surveys. The method exploits the small position differences between FIRST radio positions of lensed images and the SDSS lens galaxy positions, together with the marginal resolution of some larger gravitational lens systems by the FIRST beam. We present results of a small pilot study with the VLA and MERLIN, and discuss the desirable criteria for future surveys.
We present results on multifrequency Very Long Baseline Array (VLBA) monitoring observations of the double-image gravitationally lensed blazar JVAS B0218+357. Multi-epoch observations started less than one month after the gamma-ray flare detected in 2012 by the Large Area Telescope on board Fermi, and spanned a 2-month interval. The radio light curves did not reveal any significant flux density variability, suggesting that no clear correlation between the high energy and low-energy emission is present. This behaviour was confirmed also by the long-term Owens Valley Radio Observatory monitoring data at 15 GHz. The milliarcsecond-scale resolution provided by the VLBA observations allowed us to resolve the two images of the lensed blazar, which have a core-jet structure. No significant morphological variation is found by the analysis of the multi-epoch data, suggesting that the region responsible for the gamma-ray variability is located in the core of the AGN, which is opaque up to the highest observing frequency of 22 GHz.
175 - T. York 2005
We report the discovery of a new gravitational lens system from the CLASS survey, CLASS B0631+519. VLA, MERLIN and VLBA observations show a doubly-imaged radio core, a doubly-imaged lobe and a second lobe that is probably quadruply-imaged. The maximum image separation is 1.16 arcseconds. The VLBA resolves the most magnified image of the flat-spectrum radio core into a number of sub-components spread across approximately 20 milli-arcseconds. Optical and near-infrared imaging with the ACS and NICMOS cameras on the HST show that there are two galaxies along the line of sight to the lensed source, as was previously discovered by optical spectroscopy. The nearer galaxy at z=0.0896 is a small blue irregular, while the more distant galaxy at z=0.6196 is an elliptical type and appears to contribute most of the lensing effect. The host galaxy of the lensed source is visible in NICMOS imaging as a set of arcs that form an almost complete Einstein ring. Mass modelling using non-parametric techniques can reproduce the ring and indicates that the irregular galaxy has a (localised) effect on the flux density distribution in the Einstein ring at the 5-10% level.
81 - A. R. Patnaik 1999
We present multi-frequency VLA polarisation observations of nine gravitational lenses. The aim of these observations was to determine Faraday rotation measures (RM) for the individual lensed images, and to measure their continuum spectra over a wide range of frequencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا