Do you want to publish a course? Click here

Accretion Flow Along a Dipolar Field: Application to Intermediate Polars

98   0   0.0 ( 0 )
 Added by Gavin Ramsay
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

A hydrodynamic formulation for accretion flow channeled by a dipolar magnetic field is constructed using a curvi-linear coordinate system natural to the field structure. We solve the hydrodynamic equations and determine the velocity, density and temperature profiles of the post-shock accretion flow. The results are applied to accretion flows in intermediate polars. We have found that for systems with massive white dwarfs (~1Msolar) the temperature profiles in the flow can differ significantly to those obtained from models in which the accretion column is assumed to be cylindrical.



rate research

Read More

123 - T.Hayashi , M.Ishida 2013
We model the post-shock accretion column (PSAC) for intermediate polars (IPs), with parameterizing specific accretion rate between 0.0001 and 100 g cm-2 s-1 and metal abundance between 0.1 and 2 times of solar abundance, and taking into account the gravitational potential and non-equipartition between ions, electrons and ionization degree. We assume the cylinder and dipole as geometry of the PSAC. The PSAC becomes higher against the white dwarf (WD) radius for lower specific accretion rate and more massive WD, and may be comparable to the WD radius. The consideration of the dipolar geometry significantly reduces the density and temperature over the whole PSAC comparing with the cylindrical case when the specific accretion rate is lower than a threshold which the PSAC height reachs 0.2 RWD with and is decreased by the more massive white dwarf. We calculate the spectra of the cylindrical and dipolar PSACs with the wide range of the specific accretion rate. Although the spectra soften as the specific accretion rate decreases for the both geometrical assumptions under the specific accretion rate threshold, the softening is more speedy for the dipolar PSAC. The fact means that the both geometrical assumptions lead the different WD masses for each other when their spectra are applied to the IPs hosting the low accretion or a massive WD. Although the ionization non-equilibrium are also involved for the spectral calculation, the effects are trivial because the radiation from ionization non-equilibrium plasma is a few percent of the whole at most.
218 - M. Revnivtsev 2010
We study the power spectra of the variability of seven intermediate polars containing magnetized asynchronous accreting white dwarfs, XSS J00564+4548,IGR J00234+6141, DO Dra, V1223 Sgr, IGR J15094-6649, IGR J16500-3307 and IGR J17195-4100, in the optical band and demonstrate that their variability can be well described by a model based on fluctuations propagating in a truncated accretion disk. The power spectra have breaks at Fourier frequencies, which we associate with the Keplerian frequency of the disk at the boundary of the white dwarfs magnetospheres. We propose that the properties of the optical power spectra can be used to deduce the geometry of the inner parts of the accretion disk, in particular: 1) truncation radii of the magnetically disrupted accretion disks in intermediate polars, 2) the truncation radii of the accretion disk in quiescent states of dwarf novae
The disc instability model (DIM) has been very successful in explaining the dwarf nova outbursts observed in cataclysmic variables. When, as in intermediate polars (IP), the accreting white dwarf is magnetized, the disc is truncated at the magnetospheric radius, but for mass-transfer rates corresponding to the thermal-viscous instability such systems should still exhibit dwarf-nova outbursts. Yet, the majority of intermediate polars in which the magnetic field is not large enough to completely disrupt the accretion disc, seem to be stable, and the rare observed outbursts, in particular in systems with long orbital periods, are much shorter than normal dwarf-nova outbursts. We investigate the predictions of the disc instability model for intermediate polars in order to determine which of the observed properties of these systems can be explained by the DIM. We use our numerical code for the time evolution of accretion discs, modified to include the effects of the magnetic field, with constant or variable mass transfer from the secondary star. We show that intermediate polars have mass transfer low enough and magnetic fields large enough to keep the accretion disc stable on the cold equilibrium branch. We show that the infrequent and short outbursts observed in long period systems, such as e.g., TV Col, cannot be attributed to the thermal-viscous instability of the accretion disc, but instead have to be triggered by an enhanced mass-transfer from the secondary, or, more likely, by some instability coupling the white dwarf magnetic field with that generated by the magnetorotational instability operating in the accretion disc. Longer outbursts (a few days) could result from the disc instability.
160 - Joseph Patterson 2020
We report the detailed history of spin-period changes in five intermediate polars (DQ Herculis, AO Piscium, FO Aquarii, V1223 Sagittarii, and BG Canis Minoris) during the 30-60 years since their original discovery. Most are slowly spinning up, although there are sometimes years-long episodes of spin-down. This is supportive of the idea that the underlying magnetic white dwarfs are near spin equilibrium. In addition to the ~40 stars sharing many properties and defined by their strong, pulsed X-ray emission, there are a few rotating much faster (P<80 s), whose membership in the class is still in doubt -- and who are overdue for closer study.
114 - T.L. Parker 2005
We present an analysis of 30 archival ASCA and RXTE X-ray observations of 16 intermediate polars to investigate the nature of their orbital modulation. We show that X-ray orbital modulation is widespread amongst these systems, but not ubiquitous as indicated by previous studies that included fewer objects. Only seven of the sixteen systems show a clearly statistically significant modulation depth whose amplitude decreases with increasing X-ray energy. Interpreting this as due to photoelectric absorption in material at the edge of an accretion disc would imply that such modulations are visible for all system inclination angles in excess of 60 degrees. However, it is also apparent that the presence of an X-ray orbital modulation can appear and disappear on a timescale of ~years or months in an individual system. This may be evidence for the presence of a precessing, tilted accretion disc, as inferred in some low mass X-ray binaries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا