Do you want to publish a course? Click here

Tests for Substructure in Gravitational Lenses

115   0   0.0 ( 0 )
 Added by C. S. Kochanek
 Publication date 2003
  fields Physics
and research's language is English
 Authors C.S. Kochanek




Ask ChatGPT about the research

The flux anomalies in four-image gravitational lenses can be interpreted as evidence for the dark matter substructure predicted by cold dark matter (CDM) halo models. In principle, these flux anomalies could arise from alternate sources such as absorption, scattering or scintillation by the interstellar medium (ISM) of the lens galaxy, problems in the ellipsoidal macro models used to fit lens systems, or stellar microlensing. We apply several tests to the data that appear to rule out these alternate explanations. First, the radio flux anomalies show no significant dependence on wavelength, as would be expected for almost any propagation effect in the ISM or microlensing by the stars. Second, the flux anomaly distributions show the characteristic demagnifications of the brightest saddle point relative to the other images expected for low optical depth substructure, which cannot be mimicked by either the ISM or problems in the macro models. Microlensing by stars also cannot reproduce the suppression of the bright saddle points if the radio source sizes are consistent with the Compton limit for their angular sizes. Third, while it is possible to change the smooth lens models to fit the flux anomalies in some systems, we can rule out the necessary changes in all systems where we have additional lens constraints to check the models. Moreover, the parameters of these models are inconsistent with our present observations and expectations for the structure of galaxies. We conclude that low-mass halos remain the best explanation of the phenomenon.



rate research

Read More

103 - C.S. Kochanek 2002
We use a simple statistical test to show that the anomalous flux ratios observed in gravitational lenses are created by gravitational perturbations from substructure rather than propagation effects in the interstellar medium or incomplete models for the gravitational potential of the lens galaxy. We review current estimates that the substructure represents between 0.6% and 7% (90% confidence) of the lens galaxy mass, and outline future observational programs which can improve the results.
104 - N. Jackson , I.W.A. Browne 2006
Many lens surveys have hitherto used observations of large samples of background sources to select the small minority which are multiply imaged by lensing galaxies along the line of sight. Recently surveys such as SLACS and OLS have improved the efficiency of surveys by pre-selecting double-redshift systems from SDSS. We explore other ways to improve survey efficiency by optimum use of astrometric and morphological information in existing large-scale optical and radio surveys. The method exploits the small position differences between FIRST radio positions of lensed images and the SDSS lens galaxy positions, together with the marginal resolution of some larger gravitational lens systems by the FIRST beam. We present results of a small pilot study with the VLA and MERLIN, and discuss the desirable criteria for future surveys.
136 - S.E. Bryan , S. Mao , S.T. Kay 2008
Substructures, expected in cold dark matter haloes, have been proposed to explain the anomalous flux ratios in gravitational lenses. About 25% of lenses in the Cosmic Lens All-Sky Survey (CLASS) appear to have luminous satellites within ~ 5 kpc/h of the main lensing galaxies, which are usually at redshift z ~ 0.2-1. In this work we use the Millennium Simulation combined with galaxy catalogues from semi-analytical techniques to study the predicted frequency of such satellites in simulated haloes. The fraction of haloes that host bright satellites within the (projected) central regions is similar for red and blue hosts and is found to increase as a function of host halo mass and redshift. Specifically, at z = 1, about 11% of galaxy-sized haloes (with masses between 10^{12} M_sun/h and 10^{13} M_sun/h) host bright satellite galaxies within a projected radius of 5 kpc/h. This fraction increases to about 17% (25%) if we consider bright (all) satellites of only group-sized haloes (with masses between 10^{13} M_sun/h and 10^{14} M_sun/h). These results are roughly consistent with the fraction (~ 25%) of CLASS lensing galaxies observed to host luminous satellites. At z = 0, only ~ 3% of galaxy-sized haloes host bright satellite galaxies. The fraction rises to ~ 6%, (10%) if we consider bright (all) satellites of only group-sized haloes at z = 0. However, most of the satellites found in the inner regions are `orphan galaxies where the dark matter haloes have been completely stripped. Thus the agreement crucially depends on the true survival rate of these `orphan galaxies. We also discuss the effects of numerical resolution and cosmologies on our results.
104 - H.G. Khachatryan 2021
We consider a machine learning algorithm to detect and identify strong gravitational lenses on sky images. First, we simulate different artificial but very close to reality images of galaxies, stars and strong lenses, using six different methods, i.e. two for each class. Then we deploy a convolutional neural network architecture to classify these simulated images. We show that after neural network training process one achieves about 93 percent accuracy. As a simple test for the efficiency of the convolutional neural network, we apply it on an real Einstein cross image. Deployed neural network classifies it as gravitational lens, thus opening a way for variety of lens search applications of the deployed machine learning scheme.
81 - A. R. Patnaik 1999
We present multi-frequency VLA polarisation observations of nine gravitational lenses. The aim of these observations was to determine Faraday rotation measures (RM) for the individual lensed images, and to measure their continuum spectra over a wide range of frequencies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا