Do you want to publish a course? Click here

Chandra Temperature Map of Abell 754 and Constraints on Thermal Conduction

125   0   0.0 ( 0 )
 Added by Maxim Markevitch
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use Chandra data to derive a detailed gas temperature map of the nearby, hot, merging galaxy cluster A754. Combined with the X-ray and optical images, the map reveals a more complex merger geometry than previously thought, possibly involving more than two subclusters or a cool gas cloud sloshing independently from its former host subcluster. In the cluster central region, we detect spatial variations of the gas temperature on all linear scales, from 100 kpc (the map resolution) and up, which likely remain from a merger shock passage. These variations are used to derive an upper limit on effective thermal conductivity on a 100 kpc scale, which is at least an order of magnitude lower than the Spitzer value. This constraint pertains to the bulk of the intracluster gas, as compared to the previously reported estimates for cold fronts (which are rather peculiar sites). If the conductivity in a tangled magnetic field is at the recently predicted higher values (i.e., about 1/5 of the Spitzer value), the observed suppression can be achieved, for example, if the intracluster gas consists of magnetically isolated domains.



rate research

Read More

To better understand the mechanism or mechanisms that lead to AGN activity today, we measure the X-ray AGN fraction in a new sample of nearby clusters and examine how it varies with galaxy properties, projected cluster-centric radius, and cluster velocity dispersion. We present new wide-field Chandra X-ray Observatory observations of Abell 85, Abell 754 and the background cluster Abell 89B out to their virial radii. Out of seventeen X-ray sources associated with galaxies in these clusters, we classify seven as X-ray AGN with L_{X,B} > 10^{41} erg/s. Only two of these would be classified as AGN based on their optical spectra. We combine these observations with archival data to create a sample of X-ray AGN from six z < 0.08 clusters and find that 3.4+1.1/-0.8% of M_R < -20 galaxies host X-ray AGN with L_{X,B} > 10^{41} erg/s. We find that more X-ray AGN are detected in more luminous galaxies and attribute this to larger spheriods in more luminous galaxies and increased sensitivity to lower Eddington-rate accretion from black holes in those spheroids. At a given X-ray luminosity limit, more massive black holes can be accreting less efficiently, yet still be detected. If interactions between galaxies are the principal drivers of AGN activity, then the AGN fraction should be higher in lower velocity dispersion clusters and the outskirts of clusters. However, the tendency of the most massive and early-type galaxies to lie in the centers of the richest clusters could dilute such trends. While we find no variation in the AGN fraction with projected cluster-centric radius, we do find that the AGN fraction increases significantly from 2.6+1.0/-0.8% in rich clusters to 10.0+6.2/-4.3% in those with lower velocity dispersions.
We present a long BeppoSAX observation of Abell 754 that reports a nonthermal excess with respect to the thermal emission at energies greater than ~45 keV. A VLA radio observation at 1.4 GHz definitely confirms the existence of diffuse radio emission in the central region of the cluster, previously suggested by images at 74 and 330 MHz (Kassim et al 2001), and reports additional features. Besides, our observation determines a steeper radio halo spectrum in the 330-1400 MHz frequency range with respect to the spectrum detected at lower frequencies, indicating the presence of a spectral cutoff. The presence of a radio halo in A754, considered the prototype of a merging cluster, reinforces the link between formation of Mpc-scale radio regions and very recent or current merger processes. The radio results combined with the hard X-ray excess detected by BeppoSAX give information on the origin of the electron population responsible for nonthermal phenomena in galaxy clusters. We discuss also the possibility that 26W20, a tailed radio galaxy with BL Lac characteristics located in the field of view of the PDS, could be responsible for the observed nonthermal hard X-ray emission.
To investigate the present situation of the merging in the southern outer region of Abell 85, we carried out long (~100 ks) observations with Suzaku, and produced an X-ray hardness ratio map. We found a high hardness ratio peak in the east side of a subcluster located in the south of the cluster; an X-ray spectrum of the region including this peak indicates a high temperature of ~8.5 keV. This hot spot has not been reported so far. We consider that this hot spot is a postshock region produced by the infall of the subcluster from the southwest. By using the Rankine--Hugoniot jump conditions for shocks, the Mach number and the infall velocity of the subcluster are obtained as 1.5 +/- 0.2 and 1950^{+290}_{-280} km s^{-1}, respectively, in the case of merging with the subcluster from the southwest direction. By using the redshift difference between the A 85 and the subcluster obtained from optical observations, the angle between the line of sight and the direction of the motion of the subcluster is estimated to be 75^{+7}_{-8} degrees. We estimate the kinetic energy of the subcluster and the energy used for intracluster medium (ICM) heating to be ~10^{63} and lesssim 8 times 10^{60} erg, respectively. This shows that the deceleration of the subcluster by ICM heating has been negligibly small.
We have analyzed the Chandra, BeppoSax, and ROSAT observations of Abell 754 and report evidence of a soft, diffuse X-ray component. The emission is peaked in the cluster center and is detected out to 8 from the X-ray center. Fitting a thermal model to the combined BeppoSax and PSPC spectra show excess emission below 1 keV in the PSPC and above 100 keV in the BeppoSax PDS. The source 26W20 is in the field of view of the PDS. The addition of a powerlaw with the spectral parameters measured by Silverman et al. (1998) for 26W20 successfully models the hard component in the PDS. The remaining excess soft emission can be modeled by either a low temperature, 0.75 - 1.03 keV component, or by a powerlaw with a steep spectral index, 2.3. Addition of a second thermal component model provides a much better fit to the data than does the addition of a non-thermal component. The Chandra temperature map does not show any region cooler than 6.9 keV within the region where the cool component was detected. Simulations of the emission from embedded groups were performed and compared with the Chandra temperature map which show groups are a plausible source of ~1 keV emission. The cool component is centrally peaked in the cluster and the gas density and temperature are relatively high arguing against the WHIM as the source of the X-ray emission. X-ray emission from elliptical galaxies is not high enough to provide the total cool component luminosity, 7.0x10^43 ergs s^-1. The peak of the cool component is located between the low frequency radio halos arguing against a non-thermal interpretation for the emission. We conclude that emission from embedded groups is the most likely origin of the cool component in Abell 754.
101 - Lei Ni , Ilia I.Roussev , Jun Lin 2013
In this paper we investigate, by means of two-dimensional magnetohydrodynamic simulations, the impact of temperature-dependent resistivity and thermal conduction on the development of plasmoid instabilities in reconnecting current sheets in the solar corona. We find that the plasma temperature in the current sheet region increases with time and it becomes greater than that in the inflow region. As secondary magnetic islands appear, the highest temperature is not always found at the reconnection $X$-points, but also inside the secondary islands. One of the effects of anisotropic thermal conduction is to decrease the temperature of the reconnecting $X-$points and transfer the heat into the $O-$points, the plasmoids, where it gets trapped. In the cases with temperature-dependent magnetic diffusivity, $eta sim T^{-3/2}$, the decrease in plasma temperature at the $X-$points leads to: (i) increase in the magnetic diffusivity until the characteristic time for magnetic diffusion becomes comparable to that of thermal conduction; (ii) increase in the reconnection rate; and, (iii) more efficient conversion of magnetic energy into thermal energy and kinetic energy of bulk motions. These results provide further explanation of the rapid release of magnetic energy into heat and kinetic energy seen during flares and coronal mass ejections. In this work, we demonstrate that the consideration of anisotropic thermal conduction and Spitzer-type, temperature-dependent magnetic diffusivity, as in the real solar corona, are crucially important for explaining the occurrence of fast reconnection during solar eruptions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا