Do you want to publish a course? Click here

The Origin of the Dust Arch in the Halo of NGC 4631: An Expanding Superbubble?

82   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the nature and the origin of the dust arch in the halo of the edge-on galaxy NGC 4631 detected by Neininger & Dumke (1999). We present CO observations made using the new On-The-Fly mapping mode with the FCRAO 14m telescope, and find no evidence for CO emission associated with the dust arch. Our examination of previously published HI data shows that if previous assumptions about the dust temperature and gas/dust ratio are correct, then there must be molecular gas associated with the arch, below our detection threshold. If this is true, then the molecular mass associated with the dust arch is between 1.5 x 10^8 M(sun)and 9.7 x 10^8 M(sun), and likely towards the low end of the range. A consequence of this is that the maximum allowed value for the CO-to-H_2 conversion factor is 6.5 times the Galactic value, but most likely closer to the Galactic value. The kinematics of the HI apparently associated with the dust arch reveal that the gas here is not part of an expanding shell or outflow, but is instead two separate features (a tidal arm and a plume of HI sticking out into the halo) which are seen projected together and appear as a shell. Thus there is no connection between the dust arch and the hot X-ray emitting gas that appears to surround the galaxy Wang et al. (2001).



rate research

Read More

We present a detailed analysis of deep far-infrared observations of the nearby edge-on star-forming galaxy NGC 4631 obtained with the Herschel Space Observatory. Our PACS images at 70 and 160 um show a rich complex of filaments and chimney-like features that extends up to a projected distance of 6 kpc above the plane of the galaxy. The PACS features often match extraplanar Halpha, radio-continuum, and soft X-ray features observed in this galaxy, pointing to a tight disk-halo connection regulated by star formation. On the other hand, the morphology of the colder dust component detected on larger scale in the SPIRE 250, 350, and 500 um data matches the extraplanar H~I streams previously reported in NGC 4631 and suggests a tidal origin. The PACS 70/160 ratios are elevated in the central ~3.0 kpc region above the nucleus of this galaxy (the superbubble). A pixel-by-pixel analysis shows that dust in this region has a higher temperature and/or an emissivity with a steeper spectral index (beta > 2) than the dust in the disk, possibly the result of the harsher environment in the superbubble. Star formation in the disk seems energetically insufficient to lift the material out of the disk, unless it was more active in the past or the dust-to-gas ratio in the superbubble region is higher than the Galactic value. Some of the dust in the halo may also have been tidally stripped from nearby companions or lifted from the disk by galaxy interactions.
We present low frequency observations at $315$ and $745$ MHz from the upgraded Giant Metrewave Radio Telescope (uGMRT) of the edge-on, near-by galaxy NGC 4631. We compare the observed surface brightness profiles along the minor axis of the galaxy with those obtained from hydrodynamical simulations of galactic outflows. We detect a plateau in the emission at a height of $2-3$ kpc from the mid-plane of the galaxy, in qualitative agreement with that expected from simulations. This plateau is believed to be due to the compression of magnetic fields behind the outer shocks of galactic outflows. The estimated scale height for the synchrotron radio emission of $sim 1$ kpc indicates that cosmic ray diffusion plays as much an important role in forming the radio halo as does the advection due to the outflows. The spectral index image with regions of flatter radio spectral index in the halo appears to indicate possible effects of gas outflow from the plane of the galaxy.
NGC 4631 is an interacting galaxy which exhibits one of the largest gaseous halos observed among edge-on galaxies. We aim to examine the synchrotron and polarization properties of its disk and halo emission with new radio continuum data. Radio continuum observations of NGC 4631 were performed with the Karl G. Jansky Very Large Array at C-band (5.99 GHz) in the C & D array configurations, and at L-band (1.57 GHz) in the B, C, & D array configurations. The Rotation Measure Synthesis algorithm was utilized to derive the polarization properties. We detected linearly polarized emission at C-band and L-band. The magnetic field in the halo is characterized by strong vertical components above and below the central region of the galaxy. The magnetic field in the disk is only clearly seen in the eastern side of NGC 4631, where it is parallel to the plane of the major axis of the galaxy. We detected for the first time a large-scale, smooth Faraday depth pattern in a halo of an external spiral galaxy, which implies the existence of a regular (coherent) magnetic field. A quasi-periodic pattern in Faraday depth with field reversals was found in the northern halo of the galaxy. The field reversals in the northern halo of NGC 4631, together with the observed polarization angles, indicate giant magnetic ropes (GMRs) with alternating directions. To our knowledge, this is the first time such reversals are observed in an external galaxy.
287 - Satoki Matsushita 2004
We present high spatial resolution (2.3x1.9 or 43 pc x 36 pc at D = 3.9 Mpc) 100 GHz millimeter-wave continuum emission observations with the Nobeyama Millimeter Array toward an expanding molecular superbubble in the central region of M82. The 100 GHz continuum image, which is dominated by free-free emission, revealed that the four strongest peaks are concentrated at the inner edge of the superbubble along the galactic disk. The production rates of Lyman continuum photons calculated from 100 GHz continuum flux at these peaks are an order of magnitude higher than those from the most massive star forming regions in our Galaxy. At these regions, high velocity ionized gas (traced by H41a and [Ne II]) can be seen, and H2O and OH masers are also concentrated. The center of the superbubble, on the other hand, is weak in molecular and free-free emissions and strong in diffuse hard X-ray emission. These observations suggest that a strong starburst produced energetic explosions and resultant plasma and superbubble expansions, and induced the present starburst regions traced by our 100 GHz continuum observations at the inner edge of the molecular superbubble. These results, therefore, provide the first clear evidence of self-induced starburst in external galaxies. Starburst at the center of the superbubble, on the other hand, begins to cease because of a lack of molecular gas. This kind of intense starburst seems to have occurred several times within 10^6-10^7 years in the central region of M82.
NGC 4631 is an interacting galaxy that exhibits one of the largest, gaseous halos observed among edge-on galaxies. We aim to examine the synchrotron and cosmic-ray propagation properties of its disk and halo emission with new radio continuum data. Radio continuum observations of NGC 4631 were performed with the Karl G. Jansky Very Large Array at C-band (5.99 GHz) in the C and D array configurations, and at L-band (1.57 GHz) in the B, C, and D array configurations. Complementary observations of NGC 4631 with the Effelsberg telescope were performed at 1.42 and 4.85 GHz. The interferometric total intensity data were combined with the single-dish Effelsberg data in order to recover the missing large-scale total power emission. The thermal and nonthermal components of the total radio emission were separated by estimating the thermal contribution through the extinction-corrected H$alpha$ emission. The H$alpha$ radiation was corrected for extinction using a linear combination of the observed H$alpha$ and 24 $mu$m data. NGC 4631 has a global thermal fraction at 5.99 (1.57) GHz of 14$pm$3% (5.4$pm$1.1%). The mean scale heights of the total emission in the radio halo (thick disk) at 5.99 (1.57) GHz are $1.79pm0.54$ kpc ($1.75pm0.27$ kpc) and have about the same values for the synchrotron emission. The total magnetic field of NGC 4631 has a mean strength of $rm{langle B_{eq}rangle} simeq 9 rm{mu G}$ in the disk, and a mean strength of $rm{langle B_{eq}rangle}~simeq 7~rm{mu G}$ in the halo. We also studied a double-lobed background radio galaxy southwest of NGC 4631, which is an FR~II radio galaxy according to the distribution of spectral index across the lobes. From the halo scale heights we estimated that the radio halo is escape-dominated with convective cosmic ray propagation, and conclude that there is a galactic wind in the halo of NGC 4631.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا