We have compared the intensity distribution of molecular line emission with that of dust continuum emission, and modeled molecular line profiles in three different preprotostellar cores in order to test how dynamical evolution is related to chemical evolution, and whether we can use different chemical tracers to identify specific dynamical evolutionary stages. We used dust continuum emission to obtain the input density and temperature structures by calculating radiative transfer of dust emission. Our results show that chemical evolution is dependent on dynamical processes, which can give different evolutionary timescales, as well as the density structure of the core.