The Shroud Around the Twin Radio Jets in NGC 1052


Abstract in English

(Abridged) We discuss multiple VLBI continuum and spectral line observations and WSRT spectroscopy of NGC 1052. Sub-parsec scale features move outward at approximately 0.26c in bi-symmetric jets, most likely oriented near the plane of the sky. Absorption and emission signatures reveal ionised, atomic, and molecular components of the surrounding medium. Seven-frequency (1.4 to 43 GHz) VLBA observations show free-free absorption in the inner parsec, probably together with synchrotron self-absorption. There is apparently a geometrically thick but patchy structure oriented roughly orthogonal to the jets. The western jet is receding: it is covered more deeply and extensively. HI spectral line VLBI reveals atomic gas in front of both jets. There appear to be three velocity systems. The deepest, at high velocities (receding by 125 to 200 km/s), seems restricted to a shell 1 to 2 pc away from the core, within which this gas might be largely ionised. WSRT spectroscopy has revealed 1667 and 1665 MHz OH absorption with their line ratio varying roughly from 1:1 to 2:1 between -35 and 200 km/s. In the high velocity system the OH profiles are similar to HI, suggesting co-location of that atomic and molecular gas, and leaving unclear the connection to the H2O masing gas seen elsewhere. We have also detected both 18cm OH satellite lines in the high velocity system. They have conjugate profiles: 1612 MHz is in absorption, and 1720 MHz in emission.

Download