Do you want to publish a course? Click here

Superhumps in Cataclysmic Binaries. XXIII. V442 Ophiuchi and RX J1643.7+3402

195   0   0.0 ( 0 )
 Added by Jonathan Kemp
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of long observing campaigns on two novalike variables: V442 Ophiuchi and RX J1643.7+3402. These stars have high-excitation spectra, complex line profiles signifying mass loss at particular orbital phases, and similar orbital periods (respectively 0.12433 and 0.12056 d). They are well-credentialed members of the SW Sex class of cataclysmic variables. Their light curves are also quite complex. V442 Oph shows periodic signals with periods of 0.12090(8) and 4.37(15) days, and RX J1643.7+3402 shows similar signals at 0.11696(8) d and 4.05(12) d. We interpret these short and long periods respectively as a negative superhump and the wobble period of the accretion disk. The superhump could then possibly arise from the heating of the secondary (and structures fixed in the orbital frame) by inner-disk radiation, which reaches the secondary relatively unimpeded since the disk is not coplanar. At higher frequencies, both stars show another type of variability: quasi-periodic oscillations (QPOs) with a period near 1000 seconds. Underlying these strong signals of low stability may be weak signals of higher stability. Similar QPOs, and negative superhumps, are quite common features in SW Sex stars. Both can in principle be explained by ascribing strong magnetism to the white dwarf member of the binary; and we suggest that SW Sex stars are borderline AM Herculis binaries, usually drowned by a high accretion rate. This would provide an ancestor channel for AM Hers, whose origin is still mysterious.



rate research

Read More

We present time-resolved spectroscopy and circular spectropolarimetry of the SW Sex star RX J1643.7+3402. We find significant polarisation levels exhibiting a variability at a period of 19.38 +- 0.39 min. In addition, emission-line flaring is found predominantly at twice the polarimetric period. These two findings are strong evidences in favour of the presence of a magnetic white dwarf in the system. We interpret the measured periodicities in the context of our magnetic accretion model for SW Sex stars. In contrast with LS Pegasi -the first SW Sex star discovered to have modulated circular polarisation- the polarisation in RX J1643.7+3402 is suggested to vary at 2(omega - Omega), while the emission lines flare at (omega - Omega). However, a 2omega/omega interpretation cannot be ruled out. Together with LS Peg and V795 Her, RX J1643.7+3402 is the third SW Sex star known to exhibit modulated circular polarisation.
We report precise measures of the orbital and superhump period in twenty more dwarf novae. For ten stars, we report new and confirmed spectroscopic periods - signifying the orbital period P_o - as well as the superhump period P_sh. These are GX Cas, HO Del, HS Vir, BC UMa, RZ Leo, KV Dra, KS UMa, TU Crt, QW Ser, and RZ Sge. For the remaining ten, we report a medley of P_o and P_sh measurements from photometry; most are new, with some confirmations of previous values. These are KV And, LL And, WX Cet, MM Hya, AO Oct, V2051 Oph, NY Ser, KK Tel, HV Vir, and RX J1155.4-5641. Periods, as usual, can be measured to high accuracy, and these are of special interest since they carry dynamical information about the binary. We still have not quite learned how to read the music, but a few things are clear. The fractional superhump excess epsilon [=(P_sh-P_o)/P_o] varies smoothly with P_o. The scatter of the points about that smooth curve is quite low, and can be used to limit the intrinsic scatter in M_1, the white dwarf mass, and the mass-radius relation of the secondary. The dispersion in M_1 does not exceed 24%, and the secondary-star radii scatter by no more than 11% from a fixed mass-radius relation. For the well-behaved part of epsilon(P_o) space, we estimate from superhump theory that the secondaries are 18+-6% larger than theoretical ZAMS stars. This affects some other testable predictions about the secondaries: at a fixed P_o, it suggests that the secondaries are (compared with ZAMS predictions) 40+-14% less massive, 12+-4% smaller, 19+-6% cooler, and less luminous by a factor 2.5(7). The presence of a well-defined mass-radius relation, reflected in a well-defined epsilon(P_o) relation, strongly limits effects of nuclear evolution in the secondaries.
Accreting white dwarfs (WDs) constitute a significant fraction of the hard X-ray sources detected by the INTEGRAL observatory. Most of them are magnetic Cataclysmic Variables (CVs) of the intermediate polar (IP) and polar types, but the contribution of the Nova-likes systems and the systems with optically thin boundary layers, Dwarf Novae (DNs) and Symbiotic Binaries (or Symbiotic Stars, SySs) in quiescence is also not negligible. Here we present a short review of the results obtained from the observations of cataclysmic variables and symbiotic binaries by INTEGRAL. The highlight results include the significant increase of the known IP population, determination of the WD mass for a significant fraction of IPs, the establishment of the luminosity function of magnetic CVs, and uncovering origin of the Galactic ridge X-ray emission which appears to largely be associated with hard emission from magnetic CVs.
We investigate the characteristics of two newly discovered short-period, double-lined, massive binary systems, VFTS 450 (O9.7$;$II--Ib$,$+$,$O7::) and VFTS 652 (B1$;$Ib$,+,$O9:$;$III:). We perform model-atmosphere analyses to characterise the photospheric properties of both members of each binary (denoting the `primary as the spectroscopically more conspicuous component). Radial velocities and optical photometry are used to estimate the binary-system parameters. We estimate $T_{rm eff}=27$ kK, $log{(g)}=2.9$ (cgs) for the VFTS 450 primary spectrum (34kK, 3.6: for the secondary spectrum); and $T_{rm eff} = 22$kK, $log{(g)}=2.8$ for the VFTS 652 primary spectrum (35kK, 3.7: for the secondary spectrum). Both primaries show surface nitrogen enrichments (of more than 1 dex for VFTS 652), and probable moderate oxygen depletions relative to reference LMC abundances. We determine orbital periods of 6.89d and 8.59d for VFTS 450 and VFTS 652, respectively, and argue that the primaries must be close to filling their Roche lobes. Supposing this to be the case, we estimate component masses in the range $sim$20--50M$_odot$. The secondary spectra are associated with the more massive components, suggesting that both systems are high-mass analogues of classical Algol systems, undergoing case-A mass transfer. Difficulties in reconciling the spectroscopic analyses with the light-curves and with evolutionary considerations suggest that the secondary spectra are contaminated by (or arise in) accretion disks.
We present a table of 58 cataclysmic binary orbital periods determined using data from MDM Observatory. Most are heretofore unpublished; some are refinements of previously published periods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا