Do you want to publish a course? Click here

ROSAT-HRI investigation of the NGC 507 X-ray halo

38   0   0.0 ( 0 )
 Added by Maurizio Paolillo
 Publication date 2002
  fields Physics
and research's language is English
 Authors M. Paolillo




Ask ChatGPT about the research

We present an X-ray investigation of the elliptical galaxy NGC 507. We make use of archival Rosat HRI, PSPC and Chandra data, to connect the large-scale structure of the halo to the core morphology. Our analysis shows that the halo core (r<2-3 r_e) and the external halo (r>3 r_e) are characterised by different dynamical properties and suggests a different origin of the two components. The halo core has a complex morphology with a main X-ray emission peak, coincident with the center of the optical galaxy, and several secondary peaks. The spatial and spectral analysis of the central peak shows that this feature is produced by denser hot gas in the galaxy core. Our data support the scenario where the gas is kinetically heated by stellar mass losses. Comparison with previously published studies suggest that the core of X-ray extended galaxies is associated to the stellar distribution and has similar properties to the X-ray halo of compact galaxies. The secondary peaks are due instead to interactions between the radio-emitting plasma and the surrounding ISM. We found that the energy input by the central radio source in the ISM may be large enough to prevent gas from cooling. The total mass profile shows the presence of a dark matter halo extending on cluster scales which is likely to be associated with the whole cluster rather than with NGC 507. This structure is typical of many X-ray bright Early-Type galaxies and may explain the spatial and spectral differences with X-ray compact galaxies largely debated in literature. Finally we discuss the nature of the point sources detected in the HRI FOV.



rate research

Read More

We reanalyzed the ROSAT/HRI observation of MS1054-03, optimizing the channel HRI selection and including a new exposure of 68 ksec. From a wavelet analysis of the HRI image we identify the main cluster component and find evidence for substructure in the west, which might either be a group of galaxies falling onto the cluster or a foreground source. Our 1-D and 2-D analysis of the data show that the cluster can be fitted well by a classical betamodel centered only 20arcsec away from the central cD galaxy. The core radius and beta values derived from the spherical model(beta = 0.96_-0.22^+0.48) and the elliptical model (beta = 0.73+/-0.18) are consistent. We derived the gas mass and total mass of the cluster from the betamodel fit and the previously published ASCA temperature (12.3^{+3.1}_{-2.2} keV). The gas mass fraction at the virial radius is fgas = (14[-3,+2.5]+/-3)% for Omega_0=1, where the errors in brackets come from the uncertainty on the temperature and the remaining errors from the HRI imaging data. The gas mass fraction computed for the best fit ASCA temperature is significantly lower than found for nearby hot clusters, fgas=20.1pm 1.6%. This local value can be matched if the actual virial temperature of MS1054-032 were close to the lower ASCA limit (~10keV) with an even lower value of 8 keV giving the best agreement. Such a bias between the virial and measured temperature could be due to the presence of shock waves in the intracluster medium stemming from recent mergers. Another possibility, that reconciles a high temperature with the local gas mass fraction, is the existence of a non zero cosmological constant.
Wolf-Rayet (WR) stars in the Magellanic Clouds (MCs) are ideal for studying the production of X-ray emission by their strong fast stellar winds. We have started a systematic survey for X-ray emission from WR stars in the MCs using archival Chandra, ROSAT, and XMM-Newton observations. In Paper I, we reported the detection of X-ray emission from 29 WR stars using Chandra ACIS observations of 70 WR stars in the MCs. In this paper, we report the search and analysis of archival ROSAT PSPC and HRI observations of WR stars. While useful ROSAT observations are available for 117 WR stars in the MCs, X-ray emission is detected from only 7 of them. The detection rate of X-ray emission from MCs WR stars in the ROSAT survey is much smaller than in the Chandra ACIS survey, illustrating the necessity of high angular resolution and sensitivity. LMC-WR 101-102 and 116 were detected by both ROSAT and Chandra, but no large long-term variations are evident.
Low-frequency radio continuum observations of edge-on galaxies are ideal to study cosmic-ray electrons (CREs) in halos via radio synchrotron emission and to measure magnetic field strengths. We obtained new observations of the edge-on spiral galaxy NGC 891 at 129-163 MHz with the LOw Frequency ARray (LOFAR) and at 13-18 GHz with the Arcminute Microkelvin Imager (AMI) and combine them with recent high-resolution Very Large Array (VLA) observations at 1-2 GHz, enabling us to study the radio continuum emission over two orders of magnitude in frequency. The spectrum of the integrated nonthermal flux density can be fitted by a power law with a spectral steepening towards higher frequencies or by a curved polynomial. Spectral flattening at low frequencies due to free-free absorption is detected in star-forming regions of the disk. The mean magnetic field strength in the halo is 7 +- 2 $mu$G. The scale heights of the nonthermal halo emission at 146 MHz are larger than those at 1.5 GHz everywhere, with a mean ratio of 1.7 +- 0.3, indicating that spectral ageing of CREs is important and that diffusive propagation dominates. The halo scale heights at 146 MHz decrease with increasing magnetic field strengths which is a signature of dominating synchrotron losses of CREs. On the other hand, the spectral index between 146 MHz and 1.5 GHz linearly steepens from the disk to the halo, indicating that advection rather than diffusion is the dominating CRE transport process. This issue calls for refined modelling of CRE propagation.
61 - R.M. Sambruna 2003
We present an XMM observation of the radio jet and diffuse halo of the nearby radio galaxy NGC6251. The EPIC spectrum of the galaxys halo is best-fitted by a thermal model with temperature kT~1.6 keV and subsolar abundances. Interestingly, an additional hard X-ray component is required to fit the EPIC spectra of the halo above 3 keV, and is independently confirmed by an archival Chandra observation. However, its physical origin is not clear. Contribution from a population of undetected Low Mass X-ray Binaries seems unlikely. Instead, the hard X-ray component could be due to inverse Compton scattering of the CMB photons off relativistic electrons scattered throughout the halo of the galaxy, or non-thermal bremsstrahlung emission. The IC/CMB interpretation, together with limits on the diffuse radio emission, implies a very weak magnetic field, while a non-thermal bremsstrahlung origin implies the presence of a large number of very energetic electrons. We also detect X-ray emission from the outer (~3.5) jet, confirming previous ROSAT findings. Both the EPIC and ACIS spectra of the jet are best-fitted by a power law with photon index ~1.2. A thermal model is formally ruled out by the data. Assuming an origin of the X-rays from the jet via IC/CMB, as suggested by energetic arguments, and assuming equipartition implies a large Doppler factor (delta~10). Alternatively, weaker beaming is possible for magnetic fields several orders of magnitude lower than the equipartition field.
In this article we review the measurements and understanding of the X-ray background (XRB), discovered by Giacconi and collaborators 35 years ago. We start from the early history and the debate whether the XRB is due to a single, homogeneous physical process or to the summed emission of discrete sources, which was finally settled by COBE and ROSAT. We then describe in detail the progress from ROSAT deep surveys and optical identifications of the faint X-ray source population. In particular we discuss the role of active galactic nuclei (AGNs) as dominant contributors for the XRB, and argue that so far there is no need to postulate a hypothesized new population of X-ray sources. The recent advances in the understanding of X-ray spectra of AGN is reviewed and a population synthesis model, based on the unified AGN schemes, is presented. This model is so far the most promising to explain all observational constraints. Future sensitive X-ray surveys in the harder X-ray band will be able to unambiguously test this picture.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا