Do you want to publish a course? Click here

Isolated Star Formation: A Compact HII Region in the Virgo Cluster

58   0   0.0 ( 0 )
 Added by Ortwin Gerhard
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the discovery of an isolated, compact HII region in the Virgo cluster. The object is located in the diffuse outer halo of NGC 4388, or could possibly be in intracluster space. Star formation can thus take place far outside the main star forming regions of galaxies. This object is powered by a small starburst with an estimated mass of $sim 400msun$ and age of $sim 3myr$. From a total sample of 17 HII region candidates, the present rate of isolated star formation estimated in our Virgo field is small, $sim 10^{-6} Msun arcmin}^{-2} yr^{-1}$. However, this mode of star formation might have been more important at higher redshifts and be responsible for a fraction of the observed intracluster stars and total cluster metal production. This object is relevant also for distance determinations with the planetary nebula luminosity function from emission line surveys, for high-velocity clouds and the in situ origin of B stars in the Galactic halo, and for local enrichment of the intracluster gas by Type II supernovae.



rate research

Read More

98 - L.Cortese , G.Gavazzi , A.Boselli 2003
We present spectroscopic observations for six emission-line objects projected onto the Virgo cluster. These sources have been selected from narrow band (Halpha+[NII]) images showing faint detectable continuum emission and EW>100 Angstrom. Five of these sources result [OIII]lambda 5007 emitters at z ~ 0.31, while one 122603+130724 is confirmed to be an HII region belonging to the Virgo cluster. This point-like source has a recessional velocity of ~ 200 km/s, and is associated with the giant galaxy VCC873 (NGC 4402). It has a higher luminosity, star formation rate and metallicity than the extragalactic HII region recently discovered near the Virgo galaxy VCC836 by Gerhard et al. (2002).
We present a picture of star formation around the HII region Sh2-235 (S235) based upon data on the spatial distribution of young stellar clusters and the distribution and kinematics of molecular gas around S235. We observed 13CO(1-0) and CS(2-1) emission toward S235 with the Onsala Space Observatory 20-m telescope and analysed the star density distribution with archival data from the 2MASS survey. Dense molecular gas forms a shell-like structure at the south-eastern part of S235. The young clusters found with 2MASS data are embedded in this shell. The positional relationship of the clusters, the molecular shell and the HII region indicates that expansion of S235 is responsible for the formation of the clusters. The gas distribution in the S235 molecular complex is clumpy, which hampers interpretation exclusively on the basis of the morphology of the star forming region. We use data on kinematics of molecular gas to support the hypothesis of induced star formation, and distinguish three basic types of molecular gas components. The first type is primordial undisturbed gas of the giant molecular cloud, the second type is gas entrained in motion by expansion of the HII region (this is where the embedded clusters were formed), and the third type is a fast-moving gas, which might have been accelerated by winds from the newly formed clusters. The clumpy distribution of molecular gas and its kinematics around the HII region implies that the picture of triggered star formation around S235 can be a mixture of at least two possibilities: the collect-and-collapse scenario and the compression of pre-existing dense clumps by the shock wave.
The expansion of HII regions can trigger the formation of stars. An overdensity of young stellar objects (YSOs) is observed at the edges of HII regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is difficult to establish a causal link between HII-region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. We have observed the Galactic HII region RCW120 with herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500$mu$m. We produced temperature and H$_2$ column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions (SEDs) with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. The herschel data, with their unique sampling of the far infrared domain, have allowed us to characterize the properties of compact sources observed towards RCW120 for the first time. We have also been able to determine the envelope temperature, envelope mass and evolutionary stage of these sources. Using these properties we have shown that the density of the condensations that host star formation is a key parameter of the star-formation history, irrespective of their projected distance to the ionizing stars.
206 - A. Roman-Lopes 2013
In this paper I report the discovery of an O2If*/WN6 star probably still partially embedded in its parental cocoon in the star-burst cluster NGC 3603. From the observed size of the associated compact Hii region, it was possible to derive a probable dynamic age of no more than 600,000 years. Using the computed visual extinction value Av ~ 6 magnitudes, an absolute visual magnitude Mv =-5.7 mag is obtained, which for the assumed heliocentric distance of 7.6 kpc results in a bolometric luminosity of ~ 8x10^5 Lsun. Also from the V magnitude and the V-I color of the new star, and previous models for NGC3603s massive star population, we estimate its mass for the binary (O2If*/WN6 + O3If) and the single-star case (O2If*/WN6). In the former, it was found that the initial mass of each component possibly exceeded 80 Msun and 40 Msun, while in the latter MTT 58s initial mass possibly was in excess of 100 Msun.
109 - S. Vig , S. K. Ghosh (2 2014
The southern Galactic high mass star-forming region, G351.6-1.3, is a HII region-molecular cloud complex with a luminosity of 2.0 x 10^5 L_sun, located at a distance of 2.4 kpc. In this paper, we focus on the investigation of the associated HII region, embedded cluster and the interstellar medium in the vicinity of G351.6-1.3. We address the identification of exciting source(s) as well as the census of stellar populations. The ionised gas distribution has been mapped using the Giant Metrewave Radio Telescope (GMRT), India at three continuum frequencies: 1280, 610 and 325 MHz. The HII region shows an elongated morphology and the 1280 MHz map comprises six resolved high density regions encompassed by diffuse emission spanning 1.4 pc x 1.0 pc. The zero age main-sequence (ZAMS) spectral type of the brightest radio core is O7.5. We have carried out near-infrared observations in the JHKs bands using the SIRIUS instrument on the 1.4 m Infrared Survey Facility (IRSF) telescope. The near-infrared images reveal the presence of a cluster embedded in nebulous fan-shaped emission. The log-normal slope of the K-band luminosity function of the embedded cluster is found to be 0.27 +- 0.03 and the fraction of the near-infrared excess stars is estimated to be 43%. These indicate that the age of the cluster is consistent with 1 Myr. The champagne flow model from a flat, thin molecular cloud is used to explain the morphology of radio emission with respect to the millimetre cloud and infrared brightness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا