The Properties of Microjansky Radio Sources in the HDF-N, SSA13, and SSA22 Fields


Abstract in English

(abridged) We present multiwavelength observations for a large sample of microjansky radio sources detected in ultradeep 1.4GHz maps centered on the Hubble Deep Field-North (HDF-N) and the Hawaii Survey Fields SSA13 and SSA22. Our spectroscopic redshifts for 169 radio sources reveal a flat median redshift distribution, and these sources are hosted by similarly luminous optical L* galaxies, regardless of redshift. This is a serious concern for radio estimates of the local star formation rate density, as a substantial fraction of the ultraviolet luminosity density is generated by sub-L* galaxies at low redshifts. From our submillimeter measurements for 278 radio sources, we find error-weighted mean 850micron fluxes of 1.72$pm$0.09 mJy for the total sample, 2.37$pm$0.13 mJy for the optically-faint (I>23.5) subsample, and 1.04$pm$0.13 mJy for the optically-bright (I<23.5) subsample. We significantly (>3sigma) detect in the submillimeter 50 of the radio sources, 38 with I>23.5. Spectroscopic redshifts for three of the I<23.5 submillimeter-detected radio sources are in the range z=1.0-3.4, and all show AGN signatures. Using only the submillimeter mapped regions we find that 69pm9% of the submillimeter-detected radio population are at I>23.5. We also find that 66pm7% of the S850>5 mJy (>4sigma) sources are radio-identified. We find that millimetric redshift estimates at low redshifts are best made with a FIR template intermediate between a Milky Way type galaxy and a starburst galaxy, and at high redshifts with an Arp220 template.

Download