Do you want to publish a course? Click here

Transient chaos and resonant phase mixing in violent relaxation

57   0   0.0 ( 0 )
 Added by Henry E. Kandrup
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper explores how orbits in a galactic potential can be impacted by large amplitude time-dependences of the form that one might associate with galaxy or halo formation or strong encounters between pairs of galaxies. A period of time-dependence with a strong, possibly damped, oscillatory component can give rise to large amounts of transient chaos, and it is argued that chaotic phase mixing associated with this transient chaos could play a major role in accounting for the speed and efficiency of violent relaxation. Analysis of simple toy models involving time-dependent perturbations of an integrable Plummer potential indicates that this chaos results from a broad, possibly generic, resonance between the frequencies of the orbits and harmonics thereof and the frequencies of the time-dependent perturbation. Numerical computations of orbits in potentials exhibiting damped oscillations suggest that, within a period of 10 dynamical times t_D or so, one could achieve simultaneously both `near-complete chaotic phase mixing and a nearly time-independent, integrable end state.



rate research

Read More

This paper investigates chaos and chaotic phase mixing in triaxial Dehnen potentials which have been proposed to describe realistic ellipticals. Earlier work is extended by exploring the effects of (1) variable axis ratios, (2) `graininess associated with stars and bound substructures, idealised as friction and white noise, and (3) large-scale organised motions presumed to induce near-random forces idealised as coloured noise with finite autocorrelation time. Three important conclusions are: (1) not all the chaos can be attributed to the cusp; (2) significant chaos can persist even for axisymmetric systems; and (3) introducing a supermassive black hole can increase both the relative number of chaotic orbits and the size of the largest Lyapunov exponent. Sans perturbations, distribution functions associated with initially localised chaotic ensembles evolve exponentially towards a nearly time-independent form at a rate L that correlates with the finite time Lyapunov exponents associated with the evolving orbits. Perturbations accelerate phase space transport by increasing the rate of phase mixing in a given phase space region and by facilitating diffusion along the Arnold web that connects different phase space regions, thus facilitating an approach towards a true equilibrium. The details of the perturbation appear unimportant. All that matters are the amplitude and the autocorrelation time, upon which there is a weak logarithmic dependence. Even comparatively weak perturbations can increase L by a factor of three or more, a fact that has potentially significant implications for violent relaxation.
A classical long-range-interacting $N$-particle system relaxes to thermal equilibrium on time scales growing with $N$; in the limit $Nto infty$ such a relaxation time diverges. However, a completely non-collisional relaxation process, known as violent relaxation, takes place on a much shorter time scale independent of $N$ and brings the system towards a non-thermal quasi-stationary state. A finite system will eventually reach thermal equilibrium, while an infinite system will remain trapped in the quasi-stationary state forever. For times smaller than the relaxation time the distribution function of the system obeys the collisionless Boltzmann equation, also known as the Vlasov equation. The Vlasov dynamics is invariant under time reversal so that it does not naturally describe a relaxational dynamics. However, as time grows the dynamics affects smaller and smaller scales in phase space, so that observables not depending upon small-scale details appear as relaxed after a short time. Herewith we present an approximation scheme able to describe violent relaxation in a one-dimensional toy-model, the Hamiltonian Mean Field (HMF). The approach described here generalizes the one proposed in G. Giachetti and L. Casetti, J. Stat. Mech.: Theory Exp. 2019, 043201 (2019), that was limited to cold initial conditions, to generic initial conditions, allowing us to to predict non-equilibrium phase diagrams that turn out to be in good agreement with those obtained from the numerical integration of the Vlasov equation.
Using direct $N$-body simulations of self-gravitating systems we study the dependence of dynamical chaos on the system size $N$. We find that the $N$-body chaos quantified in terms of the largest Lyapunov exponent $Lambda_{rm max}$ decreases with $N$. The values of its inverse (the so-called Lyapunov time $t_lambda$) are found to be smaller than the two-body collisional relaxation time but larger than the typical violent relaxation time, thus suggesting the existence of another collective time scale connected to many-body chaos.
This paper discusses three new issues that necessarily arise in realistic attempts to apply nonlinear dynamics to galaxy evolution, namely: (i) the meaning of chaos in many-body systems, (ii) the time-dependence of the bulk potential, which can trigger intervals of {em transient chaos}, and (iii) the self-consistent nature of any bulk chaos, which is generated by the bodies themselves, rather than imposed externally. Simulations and theory both suggest strongly that the physical processes associated with galactic evolution should also act in nonneutral plasmas and charged particle beams. This in turn suggests the possibility of testing this physics in real laboratory experiments, an undertaking currently underway.
We derive the constraints on the mass ratio for a binary system to merge in a violent process. We find that the secondary to primary stellar mass ratio should be ~0.003 < (M_2/M_1) < ~0.15. A more massive secondary star will keep the primary stellar envelope in synchronized rotation with the orbital motion until merger occurs. This implies a very small relative velocity between the secondary star and the primary stellar envelope at the moment of merger, and therefore very weak shock waves, and low flash luminosity. A too low mass secondary will release small amount of energy, and will expel small amount of mass, which is unable to form an inflated envelope. It can however produce a quite luminous but short flash when colliding with a low mass main sequence star. Violent and luminous mergers, which we term mergebursts, can be observed as V838 Monocerotis type events, where a star undergoes a fast brightening lasting days to months, with a peak luminosity of up to ~10^6 Lo followed by a slow decline at very low effective temperatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا