No Arabic abstract
We report evidence of cyclotron resonance features from the Soft Gamma Repeater SGR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of ~ 500 eV and a narrow width of less than 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R > 0.3 M_sun/km) that is inconsistent with neutron stars or that requires a low (5-7)x10^{11} G magnetic field that is unlikely for SGRs. The line widths are also narrow compared with those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field that have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0x10^{15} G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.
We present CO(J=1-0) observations in the direction of the Soft Gamma Repeater SGR 1806-20 with the SEST telescope. We detected several molecular clouds, and we discuss in this paper the implications of these observations for the distance to the X-ray counterpart AX 1805.7-2025, the supernova remnant G10.0-0.3 and the very luminous O9-B2 star detected in the line of sight. The distance of SGR 1806-20 is estimated to be 14.5 +/- 1.4 kpc and this Soft Gamma Repeater is very likely associated with one of the brightest HII regions in the Galaxy, W31. The large size of G10.0-0.3 (25 x 38 pc) for a young supernova remnant possibly powered by a central pulsar (AX 1805.7-2025) indicates that G10.0-0.3 could be expanding in the very low density region produced by the wind of the blue star.
Observations at near and mid-infrared wavelengths (1-18 micron) of SGR 1806-20 suggest that it is associated with a cluster of giant massive stars which are enshrouded in a dense cloud of dust. The centre of the best sky position of the gamma-ray source (Hurley et al. 1999) lies on top of the dust cloud at only 7 arcsec (~0.5 pc at a distance of 14.5 kpc) from the star cluster, and 12 arcsec (~0.85 pc) from a Luminous Blue Variable Star (LBV) which had been proposed to be associated with the SGR (Kulkarni et al. 1995). The bright cloud of interstellar gas and dust observed with ISO (Infrared Space Observatory) is probably the birth site of the cluster of massive stars, the LBV star, and the progenitor of the soft gamma-ray repeater pulsar. The presence of such a young star formation region is compatible with the current interpretation of soft gamma-ray repeaters as young neutron stars. The SGR 1806-20 compact source is unlikely to form a bound binary system with any of the infrared luminous massive stars, since no flux variations in the near-infrared were detected from the latter in an interval of 4 years.The ISO observations were made over two epochs, 11 days before and 2 hours after a soft gamma-ray burst detected with the Interplanetary Network, and they show no enhanced mid-infrared emission associated to the high energy activity of the SGR.
On 2009 June 5, the Gamma-ray Burst Monitor (GBM) onboard the Fermi Gamma-ray Space Telescope triggered on two short, and relatively dim bursts with spectral properties similar to Soft Gamma Repeater (SGR) bursts. Independent localizations of the bursts by triangulation with the Konus-RF and with the Swift satellite, confirmed their origin from the same, previously unknown, source. The subsequent discovery of X-ray pulsations with the Rossi X-ray Timing Explorer (RXTE), confirmed the magnetar nature of the new source, SGR J0418+5729. We describe here the Fermi/GBM observations, the discovery and the localization of this new SGR, and our infrared and Chandra X-ray observations. We also present a detailed temporal and spectral study of the two GBM bursts. SGR J0418+5729 is the second source discovered in the same region of the sky in the last year, the other one being SGR J0501+4516. Both sources lie in the direction of the galactic anti-center and presumably at the nearby distance of ~2 kpc (assuming they reside in the Perseus arm of our galaxy). The near-threshold GBM detection of bursts from SGR J0418+5729 suggests that there may be more such dim SGRs throughout our galaxy, possibly exceeding the population of bright SGRs. Finally, using sample statistics, we conclude that the implications of the new SGR discovery on the number of observable active magnetars in our galaxy at any given time is <10, in agreement with our earlier estimates.
A great deal of evidence has recently been gathered in favor of the picture that Soft Gamma Repeaters and Anomalous X-Ray Pulsars are powered by ultra-strong magnetic fields (B > 10^{14} G; i.e. magnetars). Nevertheless, present determination of the magnetic field in such magnetar candidates has been indirect and model dependent. A key prediction concerning magnetars is the detection of ion cyclotron resonance features, which would offer a decisive diagnostic of the field strength. Here we present the detection of a 5 keV absorption feature in a variety of bursts from the Soft Gamma Repeater SGR 1806-20, confirming our initial discovery (Ibrahim et al. 2002) and establishing the presence of the feature in the sources burst spectra. The line feature is well explained as proton cyclotron resonance in an ultra-strong magnetic field, offering a direct measurement of SGR 1806-20s magnetic field (B ~ 10^{15} G) and a clear evidence of a magnetar. Together with the sources spin-down rate, the feature also provides the first measurement of the gravitational redshift, mass and radius of a magnetar.
The low energy (<10 keV) X-ray emission of the Soft Gamma-ray Repeater SGR1806-20 has been studied by means of four XMM-Newton observations carried out in the last two years, the latter performed in response to a strong sequence of hard X-ray bursts observed on 2004 October 5. The source was caught in different states of activity: over the 2003-2004 period the 2-10 keV flux doubled with respect to the historical level observed previously. The long term raise in luminosity was accompanied by a gradual hardening of the spectrum, with the power law photon index decreasing from 2.2 to 1.5, and by a growth of the bursting activity. The pulse period measurements obtained in the four observations are consistent with an average spin-down rate of 5.5x10e-10 s/s, higher than the values observed in the previous years. The long-term behavior of SGR1806-20 exhibits the correlation between spectral hardness and spin-down rate previously found only by comparing the properties of different sources (both SGRs and Anomalous X-ray Pulsars). The best quality spectrum (obtained on 6 September 2004) cannot be fitted by a single power law, but it requires an additional blackbody component (kT=0.79 keV, R_BB = 1.9 (d/15 kpc)^2 km), similar to the spectra observed in other SGRs and in Anomalous X-ray Pulsars. No spectral lines were found in the persistent emission, with equivalent width upper limits in the range 30-110 eV. Marginal evidence for an absorption feature at 4.2 keV is present in the cumulative spectrum of 69 bursts detected in September-October 2004.