No Arabic abstract
We present a Parkes multibeam HI survey of the Large Magellanic Cloud (LMC). This survey, which is sensitive to spatial structure in the range 200 pc to 10 kpc, complements the Australia Telescope Compact survey, which is sensitive to structure in the range 15 pc to 500 pc. With an rms column density sensitivity of 8 x 10^16/cm^2 for narrow lines and 4 x 10^17/cm^2 for typical linewidths of 40 km/s, emission is found to be extensive well beyond the main body of the LMC. Arm-like features extend from the LMC to join the Magellanic Bridge and the Leading Arm, a forward counterpart to the Magellanic Stream. These features, whilst not as dramatic as those in the SMC, appear to have a common origin in the Galactic tidal field, in agreement with recent 2MASS and DENIS results for the stellar population. The diffuse gas which surrounds the LMC, particularly at pas 90 to 330 deg, appears to be loosely associated with tidal features, but loosening by the ram pressure of tenuous Galactic halo gas against the outer parts of the LMC cannot be discounted. High-velocity clouds, which lie between the Galaxy and the LMC in velocity and which appear in the UV spectra of some LMC stars, are found to be associated with the LMC if their heliocentric velocity exceeds about +100 km/s. They are possibly the product of energetic outflows from the LMC disk. The HI mass of the LMC is found to be (4.8+/-0.2) x 10^8 Msun (for an assumed distance of 50 kpc), substantially more than previous recent measurements.
Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a $2.6, {rm Gpc / h}$ box with $2048^3$ particles (particle mass $1.6 times 10^{11}, {rm M_odot / h}$). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation ($10^{8}, {rm M_odot / h} < M_{rm halo} < 10^{13}, {rm M_odot / h}$), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 < z < 0.9 in redshift bins of width $Delta z approx 0.05$ and cover a quarter of the sky at an angular resolution of about 7. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.
This is the second paper in a series where we propose a method of indirectly measuring large scale structure using information from small scale perturbations. The idea is to build a quadratic estimator from small scale modes that provides a map of structure on large scales. We demonstrated in the first paper that the quadratic estimator works well on a dark-matter-only N-body simulation at a snapshot of $z=0$. Here we generalize the theory to the case of a light cone halo catalog with a non-cubic region taken into consideration. We successfully apply the generalized version of the quadratic estimator to the light cone halo catalog based on an N-body simulation of volume $sim15.03,(h^{-1},rm Gpc)^3$. The most distant point in the light cone is at a redshift of $1.42$, indicating the applicability of our method to next generation of galaxy surveys.
Simulations of large-scale structure in the universe have played a vital role in observational cosmology since 1980s in particular. Their important role will definitely continue to be true in the 21st century. Rather the requirements for simulations in the precision cosmology era will become more progressively demanding; they are supposed to fill the missing link in an accurate and reliable manner between the ``initial condition at z=1000 revealed by WMAP and the galaxy/quasar distribution at z=0 - 6 surveyed by 2dF and SDSS. In this review, I will summarize what we have learned so far from the previous cosmological simulations, and discuss several remaining problems for the new millennium.
We present results from 170ksec long RXTE observations of LMC X-1 and LMC X-3, taken in 1996 December, where their spectra can be described by a disc black body plus an additional soft (Gamma~2.8) high-energy power-law (detected up to 50keV in LMC X-3). These observations, as well as archival ASCA observations, constrain any narrow Fe line present in the spectra to have an equivalent width <90eV, broad lines (~150eV EW, sigma ~ 1keV) are permitted. We also study the variability of LMC X-1. Its X-ray power spectral density (PSD) is approximately f^{-1} between 10^{-3} and 0.3Hz with a rms variability of ~7%. Above 5keV the PSD shows evidence of a break at f > 0.2Hz, possibly indicating an outer disc radius of ~1000GM/c^2 in this likely wind-fed system. Furthermore, the coherence function between variability in the > 5keV band and variablity in the lower energy bands is extremely low. We discuss the implications of these observations for the mechanisms.
We present a study of the three-dimensional (3D) structure of the Large Magellanic Cloud (LMC) using ~2.2 million red clump (RC) stars selected from the Survey of the MAgellanic Stellar History. To correct for line-of-sight dust extinction, the intrinsic RC color and magnitude and their radial dependence are carefully measured by using internal nearly dust-free regions. These are then used to construct an accurate 2D reddening map (165 square degrees with ~10 arcmin resolution) of the LMC disk and the 3D spatial distribution of RC stars. An inclined disk model is fit to the 2D distance map yielding a best-fit inclination angle i = 25.86(+0.73,-1.39) degrees with random errors of +-0.19 degrees and line-of-nodes position angle theta = 149.23(+6.43,-8.35) degrees with random errors of +/-0.49 degrees. These angles vary with galactic radius, indicating that the LMC disk is warped and twisted likely due to the repeated tidal interactions with the Small Magellanic Cloud (SMC). For the first time, our data reveal a significant warp in the southwestern part of the outer disk starting at rho ~ 7 degrees that departs from the defined LMC plane up to ~4 kpc toward the SMC, suggesting that it originated from a strong interaction with the SMC. In addition, the inner disk encompassing the off-centered bar appears to be tilted up to 5-15 degrees relative to the rest of the LMC disk. These findings on the outer warp and the tilted bar are consistent with the predictions from the Besla et al. simulation of a recent direct collision with the SMC.