Do you want to publish a course? Click here

BL Lacertae: the multiwavelength campaign of 2000

98   0   0.0 ( 0 )
 Added by Marcello Ravasio
 Publication date 2002
  fields Physics
and research's language is English
 Authors M. Ravasio




Ask ChatGPT about the research

We present two BeppoSAX observations of BL Lacertae as part of a multiwavelength radio-to-TeV campaign. During the first observation we observe a faint Compton spectrum, while during the second, we detect a synchrotron spectrum with the highest [2-10] keV flux ever measured; above 10 keV an inverse Compton component begin to dominate. The synchrotron flux is very variable with time scales of 1 hr. We describe four different SED shifting the synchrotron peak both in frequency and flux intensity and we sketch a scenario in which a blob moves along a jet and can be located in or outside the BLR. This implies different radiative mechanism at work, SSC or external Compton, producing different high energy spectra.



rate research

Read More

348 - M. Ravasio 2003
We present two BeppoSAX observations of BL Lac (2200+420) as part of a multiwavelength campaign performed in 2000. The source was in different states of activity: in June, the X-ray spectrum was faint and hard (alpha sim 0.8), with positive residuals towards low energies. In October we detected the highest [2-10] keV flux ever measured for the source. During this observation, the spectrum was soft (alpha sim 1.56) up to 10 keV, while above this energy a hard component was dominating. The BeppoSAX data are confirmed by simultaneous RXTE short observations. During the first observation the soft X-ray flux was variable on timescales of a few hours, while the hard X-ray flux was almost constant. During the second observation, instead, the soft spectrum displayed an erratic behaviour with large variations (up to factors 3-4) on timescales smaller than 2 hrs. The analysis of the multiwavelength SED of October evidenced an intriguing feature: the optical and X-ray sections of the SED are misaligned, while in the prevailing standard picture, they are both thought to be produced via synchrotron emission. We suggested four scenarios to account for this discrepancy: a higher than galactic dust-to-gas ratio towards the source, the first detection of bulk Compton emission in the X-ray band, the presence of two synchrotron emitting regions located at different distances from the nucleus, the detection of a Klein-Nishina effect on the synchrotron spectrum. We evidenced the favorable and critical points of each scenario, but, at present, we cannot discriminate between them.
We present UBVRI light curves of BL Lacertae from May 2000 to January 2001, obtained by 24 telescopes in 11 countries. More than 15000 observations were performed in that period, which was the extension of the Whole Earth Blazar Telescope (WEBT) campaign originally planned for July-August 2000. Rapid flux oscillations are present all the time, involving variations up to a few tenths of mag on hour time scales, and witnessing an intense intraday activity of this source. Colour indexes have been derived by coupling the highest precision B and R data taken by the same instrument within 20 min and after subtracting the host galaxy contribution from the fluxes. The 620 indexes obtained show that the optical spectrum is weakly sensitive to the long-term trend, while it strictly follows the short-term flux behaviour, becoming bluer when the brightness increases. Thus, spectral changes are not related to the host galaxy contribution, but they are an intrinsic feature of fast flares. We suggest that the achromatic mechanism causing the long-term flux base-level modulation can be envisaged in a variation of the relativistic Doppler beaming factor, and that this variation is likely due to a change of the viewing angle. Discrete correlation function (DCF) analysis reveals the existence of a characteristic time scale of variability of about 7 h in the light curve of the core WEBT campaign, while no measurable time delay between variations in the B and R bands is found.
Optical, near-infrared, and radio observations of the BL Lac object PKS2155-304 were obtained simultaneously with a continuous UV/EUV/X-ray monitoring campaign in 1994 May. Further optical observations were gathered throughout most of 1994. The radio, millimeter, and near-infrared data show no strong correlations with the higher energies. The optical light curves exhibit flickering of 0.2-0.3 mag on timescales of 1-2 days, superimposed on longer timescale variations. Rapid variations of ~0.01 mag/min, which, if real, are the fastest seen to date for any BL Lac object. Small (0.2-0.3 mag) increases in the V and R bands occur simultaneously with a flare seen at higher energies. All optical wavebands (UBVRI) track each other well over the period of observation with no detectable delay. For most of the period the average colors remain relatively constant, although there is a tendency for the colors (in particular B-V) to vary more when the source fades. In polarized light, PKS 2155-304 showed strong color dependence and the highest optical polarization (U = 14.3%) ever observed for this source. The polarization variations trace the flares seen in the ultraviolet flux.
We present results from multiwavelength observations of the BL Lacertae object 1ES 1741+196, including results in the very-high-energy $gamma$-ray regime using the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is well-modelled by a power law with a spectral index of $2.7pm0.7_{mathrm{stat}}pm0.2_{mathrm{syst}}$. The integral flux above 180 GeV is $(3.9pm0.8_{mathrm{stat}}pm1.0_{mathrm{syst}})times 10^{-8}$ m$^{-2}$ s$^{-1}$, corresponding to 1.6% of the Crab Nebula flux on average. The multiwavelength spectral energy distribution of the source suggests that 1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The observations analysed in this paper extend over a period of six years, during which time no strong flares were observed in any band. This analysis is therefore one of the few characterizations of a blazar in a non-flaring state.
Combined with very-long-baseline interferometry measurements, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL~Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL~Lacertae observed by VERITAS, with a rise time of $sim$2.3~hr and a decay time of $sim$36~min. The peak flux above 200 GeV is $(4.2 pm 0.6) times 10^{-6} ;text{photon} ;text{m}^{-2}; text{s}^{-1}$ measured with a 4-minute-binned light curve, corresponding to $sim$180% of the flux which is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in VLBA observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models which invoke relativistic plasma passing stationary shocks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا