No Arabic abstract
In systems undergoing starbursts the evolution of the young stellar population is expected to drive changes in the emission line properties. This evolution is usually studied theoretically, with a combination of evolutionary synthesis models for the spectral energy distribution of starbursts and photoionization calculations. In this paper we present a more empirical approach to this issue. We apply empirical population synthesis techniques to samples of Starburst and HII galaxies in order to measure their evolutionary state and correlate the results with their emission line properties. A couple of useful tools are introduced which greatly facilitate the interpretation of the synthesis: (1) an evolutionary diagram, whose axis are the strengths of the young, intermediate age and old components of the stellar population mix, and (2) the mean age of stars associated with the starburst, $ov{t}_{SB}$. These tools are tested with grids of theoretical galaxy spectra and found to work very well even when only a small number of observed properties (absorption line equivalent widths and continuum colors) is used in the synthesis. Starburst nuclei and HII galaxies are found to lie on a well defined sequence in the evolutionary diagram. Using the empirically defined mean starburst age in conjunction with emission line data we have verified that the equivalent widths of H$beta$ and [OIII] decrease for increasing $ov{t}_{SB}$. The same evolutionary trend was identified for line ratios indicative of the gas excitation, although no clear trend was identified for metal rich systems. All these results are in excellent agreement with long known, but little tested, theoretical expectations.
Post-starburst galaxies are typically considered to be a transition population, en route to the red sequence after a recent quenching event. Despite this, recent observations have shown that these objects typically have large reservoirs of cold molecular gas. In this paper we study the star-forming gas properties of a large sample of post-starburst galaxies selected from the cosmological, hydrodynamical EAGLE simulations. These objects resemble observed high-mass post-starburst galaxies both spectroscopically and in terms of their space density, stellar mass distribution and sizes. We find that the vast majority of simulated post-starburst galaxies have significant gas reservoirs, with star-forming gas masses of ~10$^9$ M$_{odot}$, in good agreement with those seen in observational samples. The simulation reproduces the observed time evolution of the gas fraction of the post-starburst galaxy population, with the average galaxy losing ~90 per cent of its star-forming interstellar medium in only ~600 Myr. A variety of gas consumption/loss processes are responsible for this rapid evolution, including mergers and environmental effects, while active galactic nuclei play only a secondary role. The fast evolution in the gas fraction of post-starburst galaxies is accompanied by a clear decrease in the efficiency of star formation, due to a decrease in the dense gas fraction. We predict that forthcoming ALMA observations of the gas reservoirs of low-redshift post-starburst galaxies will show that the molecular gas is typically compact and has disturbed kinematics, reflecting the disruptive nature of many of the evolutionary pathways that build up the post-starburst galaxy population.
There is a consensus in the literature that starburst galaxies are triggered by inter- action events. However, it remains an open question as to what extent both merging and non-merging interactions have in triggering starbursts? In this study, we make use of the Illustris simulation to test how different triggering mechanisms can effect starburst events. We examine star formation rate, colour and environment of starburst galaxies to determine if this could be why we witness a bimodality in post-starburst populations within observational studies. Further, we briefly test the extent of quenching due to AGN feedback. From Illustris, we select 196 starburst galaxies at z = 0.15 and split them into post-merger and pre-merger/harassment driven starburst samples. We find that 55% of this sample not undergone a merger in the past 2 Gyr. Both of our samples are located in low-density environments within the filament regions of the cosmic web, however we find that pre-merger/harassment driven starburst are in higher density environments than post-merger driven starbursts. We also find that pre-merger/harassment starbursts are redder than post-merger starbursts, this could be driven by environmental effects. Both however, produce nuclear starbursts of comparable strengths.
We study the rest-frame morphology and structural properties of optically selected starburst galaxies at redshift z < 1, using multi-waveband (BViz) high resolution images taken by the Advanced Camera for Surveys (ACS) as part of the Great Observatories Origins Deep Survey (GOODS). We classify galaxies into starburst, early and late types by comparing their observed spectral energy distributions (SEDs) with local templates. We find that early-type systems have significantly higher rest-frame B -band concentration indices and AGN fraction (> 25%) than late-type spirals and optically-selected starbursts. These results are consistent with the scenario in which early-epoch (z > 1) gas-rich dissipative processes (e.g., major mergers) have played an important role in developing large central concentrations in early-type E/Sa galaxies, leading to concurrent growth of central black holes and bulge formation in some of these early merger events. The starbursts have, on average, larger asymmetries than our control sample of normal galaxies, suggesting that a significant fraction of the starburst activity is tidally triggered.
We derive dust masses ($M_{rm dust}$) from the spectral energy distributions of 58 post-starburst galaxies (PSBs). There is an anticorrelation between specific dust mass ($M_{rm dust}$/$M_{star}$) and the time elapsed since the starburst ended, indicating that dust was either destroyed, expelled, or rendered undetectable over the $sim$1 Gyr after the burst. The $M_{rm dust}$/$M_{star}$ depletion timescale, 205$^{+58}_{-37}$ Myr, is consistent with that of the CO-traced $M_{rm H_2}/M_{star}$, suggesting that dust and gas are altered via the same process. Extrapolating these trends leads to the $M_{rm dust}/M_{star}$ and $M_{rm H_2}/M_{star}$ values of early-type galaxies (ETGs) within 1-2 Gyr, a timescale consistent with the evolution of other PSB properties into ETGs. Comparing $M_{rm dust}$ and $M_{rm H_2}$ for PSBs yields a calibration, log $M_{rm H_2}$ = 0.45 log $M_{rm dust}$ + 6.02, that allows us to place 33 PSBs on the Kennicutt-Schmidt (KS) plane, $Sigma rm SFR-Sigma M_{rm H_2}$. Over the first $sim$200-300 Myr, the PSBs evolve down and off of the KS relation, as their star formation rate (SFR) decreases more rapidly than $M_{rm H_2}$. Afterwards, $M_{rm H_2}$ continues to decline whereas the SFR levels off. These trends suggest that the star-formation efficiency bottoms out at 10$^{-11} rm yr^{-1}$ and will rise to ETG levels within 0.5-1.1 Gyr afterwards. The SFR decline after the burst is likely due to the absence of gas denser than the CO-traced H$_2$. The mechanism of the $M_{rm dust}/M_{star}$ and$M_{rm H_2}/M_{star}$ decline, whose timescale suggests active galactic nucleus (AGN) or low-ionization nuclear emission-line region (LINER) feedback, may also be preventing the large CO-traced molecular gas reservoirs from collapsing and forming denser star forming clouds.
The SKA will be a unique instrument with which to study the evolution of the gas content of galaxies. A proposed deep (~8 Msec) pencil-beam survey is simulated using recently updated specifications for SKA sensitivity and survey speed. Almost 10^7 galaxies could be detected in the redshifted 21cm line, most at redshifts in excess of two. This will enable confident statements to be made about the evolution of the cosmic HI density and the HI mass function to z=3, corresponding to a lookback time of 11 Gyr. However, galaxies or groups of galaxies with masses the same as the most HI-massive galaxies at z=0 will be detectable at redshifts of 6, if they exist. The ideal instrument for studying HI evolution would have an instantaneous sensitivity at least a factor of two higher than current specifications in the critical frequency range 200-500 MHz, or A/T > 2x10^4 m^2/K. The capabilities of the SKA will be highly complementary to ALMA which will be able to study the evolution of the molecular gas component over the same redshift range.