It is widely believed that dark matter exists within galaxies and clusters of galaxies. Under the assumption that this dark matter is composed of the lightest, stable supersymmetric particle, assumed to be the neutralino, the feasibility of its indirect detection via observations of a diffuse gamma-ray signal due to neutralino annihilations within M31 is examined. To this end, first the dark matter halo of the close spiral galaxy M31 is modeled from observations, then the resultant gamma-ray flux is estimated within supersymmetric model configurations. We conclude that under favorable conditions such as the rapid accretion of neutralinos on the central black hole in M31 and/or the presence of many clumps inside its halo with $r^{-3/2}$ inner profiles, a neutralino annihilation gamma-ray signal is marginally detectable by the ongoing collaboration CELESTE.