Do you want to publish a course? Click here

Detection of a Collimated Jet towards a High-mass Protostar

62   0   0.0 ( 0 )
 Added by K. J. Brooks
 Publication date 2002
  fields Physics
and research's language is English
 Authors K. J. Brooks




Ask ChatGPT about the research

Here we present the discovery of a triple radio continuum source associated with IRAS 16547-4247. The spectral indices of the three components are consistent with a jet powered by a massive O-type star in the process of formation, with the outer radio components being the shocked gas at the working surfaces of the jet. The detected radio continuum emission from the central object is thought to arise from the jet itself, prior to the formation of a detectable HII region. All three radio continuum components are located within a molecular core of mass 10^3 M_sun. Our discovery makes IRAS 16547-4247 the most luminous (6.2 x 10^4 L_sun) young stellar object from which a thermal jet emanates, suggesting that the mechanism that produces jets in low-mass star formation also operates in high-mass star formation.



rate research

Read More

We report the first detection of the J = 1 - 0 (102.6 GHz) rotational lines of CF+ (fluoromethylidynium ion) towards CygX-N63, a young and massive protostar of the Cygnus X region. This detection occurred as part of an unbiased spectral survey of this object in the 0.8-3 mm range, performed with the IRAM 30m telescope. The data were analyzed using a local thermodynamical equilibrium model (LTE model) and a population diagram in order to derive the column density. The line velocity (-4 km s-1) and line width (1.6 km s-1) indicate an origin from the collapsing envelope of the protostar. We obtain a CF+ column density of 4.10e11 cm-2. The CF+ ion is thought to be a good tracer for C+ and assuming a ratio of 10e-6 for CF+/C+, we derive a total number of C+ of 1.2x10e53 within the beam. There is no evidence of carbon ionization caused by an exterior source of UV photons suggesting that the protostar itself is the source of ionization. Ionization from the protostellar photosphere is not efficient enough. In contrast, X-ray ionization from the accretion shock(s) and UV ionization from outflow shocks could provide a large enough ionizing power to explain our CF+ detection. Surprisingly, CF+ has been detected towards a cold, massive protostar with no sign of an external photon dissociation region (PDR), which means that the only possibility is the existence of a significant inner source of C+. This is an important result that opens interesting perspectives to study the early development of ionized regions and to approach the issue of the evolution of the inner regions of collapsing envelopes of massive protostars. The existence of high energy radiations early in the evolution of massive protostars also has important implications for chemical evolution of dense collapsing gas and could trigger peculiar chemistry and early formation of a hot core.
105 - T. M. , Rodriguez , P. Hofner 2021
We present Very Large Array C, X, and Q-band continuum observations, as well as 1.3 mm continuum and CO(2-1) observations with the Submillimeter Array toward the high-mass protostellar candidate ISOSS J23053+5953 SMM2. Compact cm continuum emission was detected near the center of the SMM2 core with a spectral index of 0.24 between 6 and 3.6 cm, and a radio luminosity of 1.3 mJy kpc$^2$. The 1.3 mm thermal dust emission indicates a mass of the SMM2 core of 45.8 Msun. The CO(2-1) observations reveal a large, massive molecular outflow centered on the SMM2 core. This fast outflow ($>$ 50 km/s from the cloud systemic velocity) is highly collimated, with a broader, lower-velocity component. The large values for outflow mass (45.2 Msun), and momentum rate (6 x 10$^{-3}$ Msun km/s/yr) derived from the CO emission are consistent with those of flows driven by high-mass YSOs. The dynamical timescale of the flow is between 1.5 - 7.2 x 10$^4$ yr. We also found from the C18O to thermal dust emission ratio that CO is depleted by a factor of about 20, possibly due to freeze out of CO molecules on dust grains. Our data are consistent with previous findings that ISOSS J23053+5953 SMM2 is an emerging high-mass protostar in an early phase of evolution, with an ionized jet, and a fast, highly collimated, and massive outflow.
290 - B. Parise , F. Du , F.-C. Liu 2012
Although water is an essential and widespread molecule in star-forming regions, its chemical formation pathways are still not very well constrained. Observing the level of deuterium fractionation of OH, a radical involved in the water chemical network, is a promising way to infer its chemical origin. We aim at understanding the formation mechanisms of water by investigating the origin of its deuterium fractionation. This can be achieved by observing the abundance of OD towards the low-mass protostar IRAS16293-2422, where the HDO distribution is already known. Using the GREAT receiver on board SOFIA, we observed the ground-state OD transition at 1391.5 GHz towards the low-mass protostar IRAS16293-2422. We also present the detection of the HDO 111-000 line using the APEX telescope. We compare the OD/HDO abundance ratio inferred from these observations with the predictions of chemical models. The OD line is detected in absorption towards the source continuum. This is the first detection of OD outside the solar system. The SOFIA observation, coupled to the observation of the HDO 111-000 line, provides an estimate of the abundance ratio OD/HDO ~ 17-90 in the gas where the absorption takes place. This value is fairly high compared with model predictions. This may be reconciled if reprocessing in the gas by means of the dissociative recombination of H2DO+ further fractionates OH with respect to water. The present observation demonstrates the capability of the SOFIA/GREAT instrument to detect the ground transition of OD towards star-forming regions in a frequency range that was not accessible before. Dissociative recombination of H2DO+ may play an important role in setting a high OD abundance. Measuring the branching ratios of this reaction in the laboratory will be of great value for chemical models.
Phosphorus is a key ingredient in terrestrial biochemistry, but is rarely observed in the molecular ISM and therefore little is known about how it is inherited during the star and planet formation sequence. We present observations of the phosphorus-bearing molecules PO and PN towards the Class I low-mass protostar B1-a using the IRAM 30m telescope, representing the second detection of phosphorus carriers in a Solar-type star forming region. The P/H abundance contained in PO and PN is ~10$^{-10}$-10$^{-9}$ depending on the assumed source size, accounting for just 0.05-0.5% of the solar phosphorus abundance and implying significant sequestration of phosphorus in refractory material. Based on a comparison of the PO and PN line profiles with the shock tracers SiO, SO$_2$, and CH$_3$OH, the phosphorus molecule emission seems to originate from shocked gas and is likely associated with a protostellar outflow. We find a PO/PN column density ratio of ~1-3, which is consistent with the values measured in the shocked outflow of the low-mass protostar L1157, the massive star-forming regions W51 and W3(OH), and the galactic center GMC G+0.693-0.03. This narrow range of PO/PN ratios across sources with a range of environmental conditions is surprising, and likely encodes information on how phosphorus carriers are stored in grain mantles.
71 - Yu Cheng 2019
We present Submillimeter Array (SMA) observations in the CO J=3-2, SiO J=5-4 and 8-7, and SO 9_8-8_7 lines, as well as Atacama Pathfinder EXperiment (APEX) observations in the CO J=6-5 line, of an extremely high-velocity and jet-like outflow in high-mass star-forming region HH 80--81. The outflow is known to contain two prominent molecular bullets, namely B1 and B2, discovered from our previous SMA CO J=2-1 observations. While B1 is detected in all the CO, SiO, and SO lines, B2 is only detected in CO lines. The CO 3-2/2-1 line ratio in B1 is clearly greater than that in B2. We perform a large velocity gradient analysis of the CO lines and derive a temperature of 70--210 K for B1 and 20--50 K for B2. Taking into account the differences in the velocity, distance from the central source, excitation conditions, and chemistry between the two bullets, we suggest that the bullets are better explained by direct ejections from the innermost vicinity of the central high-mass protostar, and that we are more likely observing the molecular component of a primary wind rather than entrained or swept-up material from the ambient cloud. These findings further support our previous suggestions that the molecular bullets indicate an episodic, disk-mediated accretion in the high-mass star formation process.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا