No Arabic abstract
We present VLT (FORS1) photometry of the lower main sequence (MS) of the Galactic Globular Cluster (GGC) NGC 6397, for stars located in 2 fields extending from a region near the cluster center out to ~ 10. The obtained CMD shows a narrow MS extending down to V ~ 27 (figure c), much deeper than any previous ground based study and comparable with previous HST photometry (Cool et al. 1996). The comparison between observed MS Luminosity Functions (LFs) derived for 2 annuli at different radial distance from the center of the cluster shows a clear-cut correlation between their slope before reaching the turn-over, and the radial position of the observed fields inside the cluster area: the LFs become flatter with decreasing radius, a trend that is consistent with the interpretation of NGC 6397 as a dynamically relaxed system.
We present (V,V-I) VLT-FORS1 observations of the Galactic Globular Cluster NGC 6397. We derive accurate color--magnitude diagrams and luminosity functions (LFs) of the cluster Main Sequence (MS) for two fields extending from a region near the centre of the cluster out to ~ 10 arcmin. The photometry of these fields produces a narrow MS extending down to V ~ 27, much deeper than any previous ground based study on this system and comparable to previous HST photometry. The V, V-I CMD also shows a deep white dwarf cooling sequence locus, contaminated by many field stars and spurious objects. We concentrate the present work on the analysis of the MSLFs derived for two annuli at different radial distance from the center of the cluster. Evidence of a clear-cut correlation between the slope of the observed LFs before reaching the turn-over, and the radial position of the observed fields inside the cluster area is found. We find that the LFs become flatter with decreasing radius (x ~ 0.15 for 1< R1 < 5.5; x ~ 0.24 for 5.5< R2 <9.8; core radius, rc = 0.05), a trend that is consistent with the interpretation of NGC 6397 as a dynamically relaxed system. This trend is also evident in the mass function.
We have used FORS1 at the ESO VLT to search for light echoes in imaging polarimetry from four historical supernovae in the face-on nearby spiral galaxy M83 (NGC 5236). No echoes were detected around our targets (SN 1923A, SN 1945B, SN 1950B and SN 1957D). This implies that the interstellar medium in their environs is rather tenuous (a few particles/cm^3), possibly as a result of previous supernova explosions that could have cleared the immediate vicinities of our targets. The merits and limitations of searching for light echoes in imaging polarimetry are discussed. From the photometry of the sources detected at the supernova locations, we estimate star cluster masses of 720, 400, 300 Mo for the cluster progenitors of SN 1957D, SN 1923A, and SN 1950B, respectively, and an upper limit of few tens of solar masses for SN 1945B.
Photometric surveys of transNeptunian objects (TNOs) and Centaurs have suggested possible correlations between some orbital parameters and surface colors of classical objects, scattered disk objects (SDOs), and Centaurs. However, larger sample sizes are needed in order to corroborate or rule out the possible correlations and find some possible new ones. We use VLT-FORS images through BVRI filters of 32 Kuiper Belt Objects (KBOs) and obtain their colors after proper reduction and calibration. We study the possible correlations merging these new measurements with the VLT published results from the ESO large program and with the latest published results of the Meudon Multicolor Survey via non-parametric statistical tests. We obtain a large dataset of 116 objects (classical, SDOs and Centaurs) and, in addition to confirming most of the correlations and conclusions reached in the literature, some possible new correlations are found. The most interesting ones are some correlations of color vs. orbital parameters for the different dynamical groups. We find that some correlations in the classical group, as well as the (dynamically) cold and hot subgroups depend on the size of the objects. As a by-product of our study, we were able to identify new candidates for light curve studies and found that ~55% of the objects showed variability above 0.15 mags. This is a higher value than what is found in other studies. Since our sample contains smaller objects than samples from other studies, this result might be an indication that the smaller TNOs are more elongated than the larger ones.
We present preliminary results of our dynamical study of the outer globular cluster system of NGC 1399, the central galaxy in the Fornax Cluster. About 160 new radial velocities for globular clusters at projected galactocentric distances between 8 and 18 arcminutes indicate that the constant velocity dispersion of 276 km/s (for all clusters) already found for the inner region can be traced out to 80 kpc. We find that the kinematical properties of the blue (metal-poor) and the red (metal-rich) globular cluster subpopulations appear to be different: While the velocity distribution of the red clusters is symmetric with respect to the systemic velocity of NGC 1399, the blue clusters show a somewhat asymmetric distribution, with more velocities above the systemic velocity.
Although not designed as an astrometric instrument, Kepler is expected to produce astrometric results of a quality appropriate to support many of the astrophysical investigations enabled by its photometric results. On the basis of data collected during the first few months of operation, the astrometric precision for a single 30 minute measure appears to be better than 4 milliarcseconds (0.001 pixel). Solutions for stellar parallax and proper motions await more observations, but the analysis of the astrometric residuals from a local solution in the vicinity of a star have already proved to be an important tool in the process of confirming the hypothesis of a planetary transit.