We present a multi-wavelength study of the star forming region ISOSS J 20298+3559, which was identified by a cross-correlation of cold compact sources from the 170 micron ISOPHOT Serendipity Survey (ISOSS) database coinciding with objects detected by the MSX, 2MASS and IRAS infrared surveys. ISOSS J 20298+3559 is associated with a massive dark cloud complex (M ~ 760 M$_{odot}$) and located in the Cygnus X giant molecular cloud. We derive a distance of 1800 pc on the basis of optical extinction data. The low average dust temperature (T ~ 16 K) and large mass (M ~ 120 M$_{odot}$) of the dense inner part of the cloud, which has not been dispersed, indicates a recent begin of star formation. The youth of the region is supported by the early evolutionary stage of several pre- and protostellar objects discovered across the regio n: I) Two candidate Class 0 objects with masses of 8 and 3.5 M$_{odot}$, II) a gravitationally bound, cold (T ~ 12 K) and dense (n(H$_{2}$) ~ 2 x 10$^{5}$ cm$^{-3}$) cloud core with a mass of 50 M$_{odot}$ and III) a Herbig B2 star with a mass of 6.5 M$_{odot}$ and a bolometric luminosity of 2200 L$_{odot}$, showing evidence for ongoing accretion and a stellar age of less than 40000 years. The dereddened SED of the Herbig star is well reproduced by an accretion disc + star model. The externally heated cold cloud core is a good candidate for a massive pre-protostellar object. The star formation efficiency in the central cloud region is about 14 %.