The Flight Spectral Response of the ACIS Instrument


Abstract in English

We discuss the flight calibration of the spectral response of the Advanced CCD Imaging Spectrometer (ACIS) on-board the Chandra X-ray Observatory (CXO). The spectral resolution and sensitivity of the ACIS instrument have both been evolving over the course of the mission. The spectral resolution of the frontside-illuminated (FI) CCDs changed dramatically in the first month of the mission due to radiation damage. Since that time, the spectral resolution of the FI CCDs and the backside-illuminated (BI) CCDs have evolved gradually with time. We demonstrate the efficacy of charge-transfer inefficiency (CTI) correction algorithms which recover some of the lost performance. The detection efficiency of the ACIS instrument has been declining throughout the mission, presumably due to a layer of contamination building up on the filter and/or CCDs. We present a characterization of the energy dependence of the excess absorption and demonstrate software which models the time dependence of the absorption from energies of 0.4 keV and up. The spectral redistribution function and the detection efficiency are well-characterized at energies from 1.5 to 8.0 keV. The calibration at energies below 1.5 keV is challenging because of the lack of strong lines in the calibration source and also because of the inherent non-linear dependence with energy of the CTI and the absorption by the contamination layer. We have been using data from celestial sources with relatively simple spectra to determine the quality of the calibration below 1.5 keV. The analysis of these observations demonstrate that the CTI correction recovers a significant fraction of the spectral resolution of the FI CCDs and the models of the time-dependent absorption result in consistent measurements of the flux at low energies for data from a BI (S3) CCD.

Download