Do you want to publish a course? Click here

VLT spectroscopy of NGC3115 globular clusters

60   0   0.0 ( 0 )
 Added by Harald Kuntschner
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results derived from VLT-FORS2 spectra of 24 different globular clusters associated with the lenticular galaxy NGC3115. A subsample of 17 globular clusters have sufficiently high signal-to-noise to allow precision measurements of absorption line-strengths. Comparing these indices to new stellar population models by Thomas et al. we determine ages, metallicities and element abundance ratios. Our data are also compared with the Lick/IDS observations of Milky Way and M31 globular clusters. Unpublished higher order Balmer lines (HgammaA,F and HdeltaA,F) from the Lick/IDS observations are given in the Appendix. Our best age estimates show that the observed clusters which sample the bimodal colour distribution of NGC3115 are coeval within our observational errors (2-3 Gyr). Our best calibrated age/metallicity diagnostic diagram (Hbeta vs [MgFe]) indicates an absolute age of 11-12 Gyr. We confirm with our accurate line-strength measurements that the (V-I) colour is a good metallicity indicator within the probed metallicity range. The abundance ratios for globular clusters in NGC3115 give an inhomogeneous picture. We find a range from solar to super-solar ratios for both blue and red clusters. From our accurate recession velocities we detect, independent of metallicity, clear rotation in the sample of globular clusters. In order to explain the metallicity and abundance ratio pattern, particularly the range in abundance ratios for the metal rich globular clusters in NGC3115, we favour a formation picture with more than two distinct formation episodes.(Abridged)



rate research

Read More

We obtained spectra of 74 globular clusters in M81. These globular clusters had been identified as candidates in an HST ACS I-band survey. 68 of these 74 clusters lie within 7 of the M81 nucleus. 62 of these clusters are newly spectroscopically confirmed, more than doubling the number of confirmed M81 GCs from 46 to 108. We determined metallicities for our 74 observed clusters using an empirical calibration based on Milky Way globular clusters. We combined our results with 34 M81 globular cluster velocities and 33 metallicities from the literature and analyzed the kinematics and metallicity of the M81 globular cluster system. The mean of the total sample of 107 metallicities is -1.06 +/- 0.07, higher than either M31 or the Milky Way. We suspect this high mean metallicity is due to an overrepresentation of metal-rich clusters in our sample created by the spatial limits of the HST I-band survey. The metallicity distribution shows marginal evidence for bimodality, with metal-rich and metal-poor peaks approximately matching those of M31 and the Milky Way. The GC system as a whole, and the metal-poor GCs alone, show evidence of a radial metallicity gradient. The M81 globular cluster system as a whole shows strong evidence of rotation, with V_r(deprojected) = 108 +/- 22 km/s overall. This result is likely biased toward high rotational velocity due to overrepresentation of metal-rich, inner clusters. The rotation patterns among globular cluster subpopulations are roughly similar to those of the Milky Way: clusters at small projected radii and metal-rich clusters rotate strongly, while clusters at large projected radii and metal-poor clusters show weaker evidence of rotation.
We present results derived from VLT-FORS2 spectra of 17 globular clusters associated with the nearby lenticular galaxy NGC3115. Comparing line-strength indices to new stellar population models by Thomas et al. we determine ages, metallicities and element abundance ratios. Our data are also compared with the Lick/IDS observations of Milky Way and M31 globular clusters. Our best age estimates show that the observed clusters which sample the bimodal colour distribution of NGC3115 globular clusters are coeval within our observational errors (2-3 Gyr). Our best calibrated age/metallicity diagnostic diagram (Hbeta vs [MgFe]) indicates an absolute age of 11-12 Gyr consistent with the luminosity weighted age for the central part of NGC3115. We confirm with our accurate line-strength measurements that the (V-I) colour is a good metallicity indicator within the probed metallicity range (-1.5 < [Fe/H] < 0.0). The abundance ratios for globular clusters in NGC3115 give an inhomogeneous picture. We find a range from solar to super-solar ratios for both blue and red clusters. This is similar to the data for M31 while the Milky Way seems to harbour clusters which are mainly consistent with [alpha/Fe] =~ 0.3.
63 - Charli M. Sakari 2019
Integrated light (IL) spectroscopy enables studies of stellar populations beyond the Milky Way and its nearest satellites. In this paper, I will review how IL spectroscopy reveals essential information about globular clusters and the assembly histories of their host galaxies, concentrating particularly on the metallicities and detailed chemical abundances of the GCs in M31. I will also briefly mention the effects of multiple populations on IL spectra, and how observations of distant globular clusters help constrain the source(s) of light-element abundance variations. I will end with future perspectives, emphasizing how IL spectroscopy can bridge the gap between Galactic and extragalactic astronomy.
The giant elliptical galaxy NGC 1316 is the brightest galaxy in the Fornax cluster, and displays a number of morphological features that might be interpreted as an intermediate age merger remanent ($sim$3 Gyr). Based on the idea that globular clusters systems (GCS) constitute genuine tracers of the formation and evolution of their host galaxies, we conducted a spectroscopic study of approximately 40 globular clusters (GCs) candidates associated with this interesting galaxy. We determined ages, metallicities, and $alpha$-element abundances for each GC present in the sample, through the measurement of different Lick indices and their subsequent comparison with simple stellar populations models (SSPs).
(ABRIDGED) Globular clusters trace the formation and evolution of the Milky Way and surrounding galaxies, and outline their chemical enrichment history. To accomplish these tasks it is important to have large samples of clusters with homogeneous data and analysis to derive kinematics, chemical abundances, ages and locations. We obtain homogeneous metallicities and alpha-element enhancement for over 800 red giant stars in 51 Galactic bulge, disc, and halo globular clusters that are among the most distant and/or highly reddened in the Galaxys globular cluster system. We observed R ~ 2000 spectra in the wavelength interval 456-586 nm and applied full spectrum fitting technique. We compared the mean abundances of all clusters with previous work and with field stars. We used the relation between mean metallicity and horizontal branch morphology defined by all clusters to select outliers for discussion. We find our metallicities are comparable to those derived from high-resolution data to within sigma = 0.08 dex over the interval -2.5 < [Fe/H] < 0.0. We also find that the distribution of [Mg/Fe] and [alpha/Fe] with [Fe/H] for the 51 clusters follows the general trend exhibited by field stars. It is the first time that the following clusters have been included in a large sample of homogeneous stellar spectroscopic observations and metallicity derivation: BH 176, Djorg 2, Pal 10, NGC 6426, Lynga 7, and Terzan 8. In particular, only photometric metallicities were available previously for the first three clusters, and the available metallicity for NGC 6426 was based on integrated spectroscopy and photometry. Two other clusters, HP 1 and NGC 6558, are confirmed as candidates for the oldest globular clusters in the Milky Way. The technique used here can also be applied to globular cluster systems in nearby galaxies with current instruments and to distant galaxies with the advent of ELTs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا