Do you want to publish a course? Click here

Factors Determining Variability Time in Active Galactic Nucleus Jets

51   0   0.0 ( 0 )
 Added by Ray Protheroe
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

The relationship between observed variability time and emission region geometry is explored for the case of emission by relativistic jets. The approximate formula for the jet-frame size of the emission region, $R=DcDelta t_{rm obs}$ is shown to lead to large systematic errors when used together with observed luminosity and assumed or estimated Doppler factor $D$ to estimate the jet-frame photon energy density. These results have implications for AGN models in which low-energy photons are targets for interaction of high energy particles and photons, e.g. synchrotron-self Compton models and hadronic blazar models, as well as models of intra-day variable sources in which the photon energy density imposes a brightness temperature limit through Compton scattering. The actual relationship between emission region geometry and observed variability is discussed for a variety of geometries including cylinders, spheroids, bent, helical and conical jet structures, and intrinsic variability models including shock excitation. The effects of time delays due to finite particle acceleration and radiation time scales are also discussed.



rate research

Read More

We present the results of a multi-wavelength follow up campaign for the luminous nuclear transient Gaia16aax, which was first identified in January 2016. The transient is spatially consistent with the nucleus of an active galaxy at z=0.25, hosting a black hole of mass $rm sim6times10^8M_odot$. The nucleus brightened by more than 1 magnitude in the Gaia G-band over a timescale of less than one year, before fading back to its pre-outburst state over the following three years. The optical spectra of the source show broad Balmer lines similar to the ones present in a pre-outburst spectrum. During the outburst, the $rm Halpha$ and $rm Hbeta$ emission lines develop a secondary peak. We also report on the discovery of two transients with similar light curve evolution and spectra: Gaia16aka and Gaia16ajq. We consider possible scenarios to explain the observed outbursts. We exclude that the transient event could be caused by a microlensing event, variable dust absorption or a tidal encounter between a neutron star and a stellar mass black hole in the accretion disk. We consider variability in the accretion flow in the inner part of the disk, or a tidal disruption event of a star $geq 1 M_{odot}$ by a rapidly spinning supermassive black hole as the most plausible scenarios. We note that the similarity between the light curves of the three Gaia transients may be a function of the Gaia alerts selection criteria.
The apparent position of jet base (core) in radio-loud active galactic nuclei changes with frequency because of synchrotron self-absorption. Studying this `core shift` effect enables us to reconstruct properties of the jet regions close to the central engine. We report here results from core shift measurements in AGNs observed with global VLBI at 2 and 8 GHz at epochs from 1994 to 2016. Our sample contains 40 objects observed at least 10 times during that period. The core shift is determined using a new automatic procedure introduced to minimize possible biases. The resulting multiple epoch measurements of the core position are employed for examining temporal variability of the core shift. We argue that the core shift variability is a common phenomenon, as established for 33 of 40 AGNs we study. Our analysis shows that the typical offsets between the core positions at 2 and 8 GHz are about 0.5 mas and they vary in time. Typical variability of the individual core positions is about 0.3 mas. The measurements show a strong dependence between the core position and its flux density, suggesting that changes in both are likely related to the nuclear flares injecting denser plasma into the flow. We determine that density of emitting relativistic particles significantly increases during these flares, while relative magnetic field changes less and in the opposite direction.
We discuss the opacity in the core regions of active galactic nuclei observed with Very Long Baseline Interferometry (VLBI), and describe a new method for deriving the frequency-dependent shifts of the VLBI core from the frequency-dependent time lags of flares observed with single-dish observations. Application of the method to the core shifts of the quasar 3C 345 shows a very good agreement between the core shifts directly measured from VLBI observations and derived from flares in the total flux density using the proposed method. The frequency-dependent time lags of flares can be used to derive physical parameters of the jets, such as distance from the VLBI core to the base of the jet and the magnetic fields in the core region. Our estimates for 3C 345 indicate core magnetic fields ~0.1 G and magnetic field at 1 pc ~0.4 G.
146 - Jin Zhang 2018
We compile the radio-optical-X-ray spectral energy distributions (SEDs) of 65 knots and 29 hotspots in 41 active galactic nucleus jets to examine their high energy radiation mechanisms. Their SEDs can be fitted with the single-zone leptonic models, except for the hotspot of Pictor A and six knots of 3C 273. The X-ray emission of one hotspot and 22 knots is well explained as synchrotron radiations under the equipartition condition; they usually have lower X-ray and radio luminosities than the others, which may be due to a lower beaming factor. An inverse Compton (IC) process is involved for explaining the X-ray emission of the other SEDs. Without considering the equipartition condition, their X-ray emission can be attributed to the synchrotron-self-Compton (SSC) process, but the derived jet power (P_jet) are not correlated with L_k and most of them are larger than L_k with more than three orders of magnitude, where L_k is the jet kinetic power estimated with their radio emission. Under the equipartition condition, the X-ray emission is well interpreted with the IC process to the cosmic microwave background photons (IC/CMB). In this scenario, the derived P_jet of knots and hotspots are correlated with and comparable to L_k. These results suggest that the IC/CMB model may be the promising interpretation of their X-ray emission. In addition, a tentative knot-hotspot sequence in the synchrotron peak-energy--peak-luminosity plane is observed, similar to the blazar sequence, which may be attributed to their different cooling mechanisms of electrons.
Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا