No Arabic abstract
Two newly identified magnetic cataclysmic variables discovered in the Sloan Digital Sky Survey (SDSS), SDSSJ155331.12+551614.5 and SDSSJ132411.57+032050.5, have spectra showing highly prominent, narrow, strongly polarized cyclotron humps with amplitudes that vary on orbital periods of 4.39 and 2.6 hrs, respectively. In the former, the spacing of the humps indicates the 3rd and 4th harmonics in a magnetic field of ~60 MG. The narrowness of the cyclotron features and the lack of strong emission lines imply very low temperature plasmas and very low accretion rates, so that the accreting area is heated by particle collisions rather than accretion shocks. The detection of rare systems like these exemplifies the ability of the SDSS to find the lowest accretion rate close binaries.
Double-peaked Balmer lines have been observed in about 150 AGNs and were interpreted preferably as emission from relativistic accretion disks. In this paper, we report the discovery of extreme double-peaked lines in SDSS J0942+0900 and SDSS J1417+6141. The FWHM of the Halpha line ~40,600 km/s in the first object is almost twice as large as the broadest one previously known. By comparing the line profile with accretion disk models, we find that most of the line flux is emitted from a narrow annulus around 100Rg in SDSS J0942+0900, and from a disk of radii between 100 and 400Rg in SDSS J1417+6141. This is the first time that an accretion disk at radii below 100Rg can be directly probed through optical emission lines. A certain asymmetry in the disk is required for both objects. Another much weaker broad Halpha component (EW~20A, and FWHM 4000km/s) is also detected in both objects. Both objects show weak radio emission and strong high-ionization narrow lines.
The ROSAT All-Sky Survey (RASS) was the first imaging X-ray survey of the entire sky. While X-ray source counterparts are known to range from distant quasars to nearby M dwarfs, the RASS data alone are often insufficient to determine the nature of an X-ray source. As a result, large-scale follow-up programs are required to construct samples of known X-ray emitters. We use optical data produced by the Sloan Digital Sky Survey (SDSS) to identify 709 stellar X-ray emitters cataloged in the RASS and falling within the SDSS Data Release 1 footprint. Most of these are bright stars with coronal X-ray emission unsuitable for SDSS spectroscopy, which is designed for fainter objects (g > 15 mag). Instead, we use SDSS photometry, correlations with the Two Micron All Sky Survey and other catalogs, and spectroscopy from the Apache Point Observatory 3.5 m telescope to identify these stellar X-ray counterparts. Our sample of 707 X-ray-emitting F, G, K, and M stars is one of the largest X-ray-selected samples of such stars. We derive distances to these stars using photometric parallax relations appropriate for dwarfs on the main sequence, and use these distances to calculate LX. We also identify a previously unknown cataclysmic variable (CV) as a RASS counterpart. Separately, we use correlations of the RASS and the SDSS spectroscopic catalogs of CVs and white dwarfs (WDs) to study the properties of these rarer X-ray-emitting stars. We examine the relationship between (fX/fg) and the equivalent width of the Hbeta emission line for 46 X-ray-emitting CVs and discuss tentative classifications for a subset based on these quantities. We identify 17 new X-ray-emitting DA (hydrogen) WDs, of which three are newly identified WDs. (abridged)
To obtain a better statistics on the occurrence of magnetism among white dwarfs, we searched the spectra of the hydrogen atmosphere white dwarf stars (DAs) in the Data Release 7 of the Sloan Digital Sky Survey (SDSS) for Zeeman splittings and estimated the magnetic fields. We found 521 DAs with detectable Zeeman splittings, with fields in the range from around 1 MG to 733 MG, which amounts to 4% of all DAs observed. As the SDSS spectra have low signal-to-noise ratios, we carefully investigated by simulations with theoretical spectra how reliable our detection of magnetic field was.
We quantify the variability of faint unresolved optical sources using a catalog based on multiple SDSS imaging observations. The catalog covers SDSS Stripe 82, and contains 58 million photometric observations in the SDSS ugriz system for 1.4 million unresolved sources. In each photometric bandpass we compute various low-order lightcurve statistics and use them to select and study variable sources. We find that 2% of unresolved optical sources brighter than g=20.5 appear variable at the 0.05 mag level (rms) simultaneously in the g and r bands. The majority (2/3) of these variable sources are low-redshift (<2) quasars, although they represent only 2% of all sources in the adopted flux-limited sample. We find that at least 90% of quasars are variable at the 0.03 mag level (rms) and confirm that variability is as good a method for finding low-redshift quasars as is the UV excess color selection (at high Galactic latitudes). We analyze the distribution of lightcurve skewness for quasars and find that is centered on zero. We find that about 1/4 of the variable stars are RR Lyrae stars, and that only 0.5% of stars from the main stellar locus are variable at the 0.05 mag level. The distribution of lightcurve skewness in the g-r vs. u-g color-color diagram on the main stellar locus is found to be bimodal (with one mode consistent with Algol-like behavior). Using over six hundred RR Lyrae stars, we demonstrate rich halo substructure out to distances of 100 kpc. We extrapolate these results to expected performance by the Large Synoptic Survey Telescope and estimate that it will obtain well-sampled 2% accurate, multi-color lightcurves for ~2 million low-redshift quasars, and will discover at least 50 million variable stars.
We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We identified ~1000 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L_bol~10^45-10^47 erg/s and L/L_Edd~0.01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ~30-50% among all g<~22 quasars over a baseline of ~15 years. These EVQs are good candidates for so-called changing-look quasars, where a spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.