Do you want to publish a course? Click here

The ELAIS Deep X-ray Survey I: Chandra Source Catalogue and First Results

108   0   0.0 ( 0 )
 Added by James Manners
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of two deep (75 ks) Chandra observations of the European Large Area ISO Survey (ELAIS) fields N1 and N2 as the first results from the ELAIS deep X-ray survey. This survey is being conducted in well studied regions with extensive multi-wavelength coverage. Here we present the Chandra source catalogues along with an analysis of source counts, hardness ratios and optical classifications. A total of 233 X-ray point sources are detected in addition to 2 soft extended sources, which are found to be associated with galaxy clusters. An over-density of sources is found in N1 with 30% more sources than N2, which we attribute to large-scale structure. A similar variance is seen between other deep Chandra surveys. The source count statistics reveal an increasing fraction of hard sources at fainter fluxes. The number of galaxy-like counterparts also increases dramatically towards fainter fluxes, consistent with the emergence of a large population of obscured sources.



rate research

Read More

We have undertaken a survey of archived, pointed ROSAT PSPC data for blazars by correlating the ROSAT WGACAT database with several publicly available radio catalogs, restricting our candidate list to serendipitous flat radio spectrum sources (alpha_r <= 0.70). Here we discuss our survey methods, identification procedure and first results. Our survey is found to be ~ 95% efficient at finding flat-spectrum radio-loud quasars (FSRQs, 59 of our first 85 IDs) and BL Lacertae objects (22 of our first 85 IDs), a figure which is comparable to or greater than that achieved by other radio and X-ray survey techniques. The identifications presented here show that all previous samples of blazars (even when taken together) did not representatively survey the blazar population, missing critical regions of (L_X,L_R) parameter space within which large fractions of the blazar population lie. Particularly important is the identification of a large population of FSRQs (>~ 25% of DXRBS FSRQs) with ratios of X-ray to radio luminosity >~ 10^-6 (alpha_rx <~ 0.78). In addition, due to our greater sensitivity, DXRBS has already more than doubled the number of FSRQs in complete samples with 5 GHz (radio) luminosities between 10^31.5 and 10^33.5 erg/s/Hz and fills in the region of parameter space between X-ray selected and radio-selected samples of BL Lacs. DXRBS is the very first sample to contain statistically significant numbers of blazars at low luminosities, approaching what should be the lower end of the FSRQ luminosity function.
373 - P. Romano 2008
We present the BMW-Chandra source catalogue drawn from essentially all Chandra ACIS-I pointed observations with an exposure time in excess of 10ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by Lazzati et al. (1999) and Campana et al. (1999), which can characterise both point-like and extended sources, we identified 21325 sources. Among them, 16758 are serendipitous, i.e. not associated with the targets of the pointings, and do not require a non-automated analysis. This makes our catalogue the largest compilation of Chandra sources to date. The 0.5--10 keV absorption corrected fluxes of these sources range from ~3E-16 to 9E-12 erg cm^-2 s^-1 with a median of 7E-15 erg cm^-2 s^-1. The catalogue consists of count rates and relative errors in three energy bands (total, 0.5-7keV; soft, 0.5-2keV; and hard, 2-7keV), and source positions relative to the highest signal-to-noise detection among the three bands. The wavelet algorithm also provides an estimate of the extension of the source. We include information drawn from the headers of the original files, as well, and extracted source counts in four additional energy bands, SB1 (0.5-1keV), SB2 (1-2keV), HB1 (2-4keV), and HB2 (4-7keV). We computed the sky coverage for the full catalogue and for a subset at high Galactic latitude (|b|> 20deg). The complete catalogue provides a sky coverage in the soft band (0.5-2keV, S/N =3) of ~8 deg^2 at a limiting flux of 1E-13 erg cm^-2 s^-1, and ~2 deg^2 at a limiting flux of ~1E-15 erg cm^-2 s^-1.
As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centered at Galactic latitude b = 1.5 degrees above and below the Galactic Centre, spanning (l x b) = (6x1) degrees. The catalogue consists of 2 or more epochs of observations for each line of sight in r, i and H{alpha} filters. It is complete down to r = 20.2 and i = 19.2 mag; the mean 5{sigma} depth is r = 22.5 and i = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ~ 10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all optical sources within the 4{sigma} X-ray error circle. This analysis yields 1480 potential counterparts (~ 90 per cent of the sample). 584 counterparts have saturated photometry (r<17, i<16), indicating these objects are likely foreground sources and the real counterparts. 171 candidate counterparts are detected only in the i-band. These sources are good qLMXB and CV candidates as they are X-ray bright and likely located in the Bulge.
The sources discovered in deep hard X-ray surveys with 2-8 keV fluxes of 10^-14 erg cm^-2 s^-1 make up the bulk of the X-ray background at these energies. We present here detailed multi-wavelength observations of three such sources from the ELAIS Deep X-ray Survey. The observations include sensitive near-infrared spectroscopy with the Subaru Telescope and X-ray spectral information from the Chandra X-ray Observatory. The sources observed all have optical-to-near-IR colours redder than an unobscured quasar and comprise a reddened quasar, a radio galaxy and an optically-obscured AGN. The reddened quasar is at a redshift z=2.61 and shows a very large X-ray absorbing column of N_H approx 3.10^23 cm^-2. This contrasts with the relatively small amount of dust reddening, implying a gas-to-dust ratio along the line-of-sight a hundred times greater than that of the Milky Way. The radio galaxy at z=1.57 shows only narrow emission lines, but has a surprisingly soft X-ray spectrum. The softness of this spectrum either indicates an unusually low gas-to-dust ratio for the absorbing medium or X-ray emission related to the young radio source. The host galaxy is extremely red (R-K=6.4) and its optical/near-IR spectrum is best fit by a strongly reddened (A_V~2) starburst. The third X-ray source discussed is also extremely red (R-K=6.1) and lies in a close grouping of three other R-K>6 galaxies. No emission or absorption lines were detected from this object, but its redshift (and that of one of the nearby galaxies) are constrained by SED-fitting to be just greater than z=1. The extremely red colours of these two galaxies can be accounted for by old stellar populations. These observations illustrate the diverse properties of hard X-ray selected AGN.
70 - Shanil Virani 2005
The Extended Chandra Deep Field-South (ECDFS) survey consists of 4 Chandra ACIS-I pointings and covers $approx$ 1100 square arcminutes ($approx$ 0.3 deg$^2$) centered on the original CDF-S field to a depth of approximately 228 ks. This is the largest Chandra survey ever conducted at such depth, and only one XMM-Newton survey reaches a lower flux limit in the hard 2.0--8.0 keV band. We detect 651 unique sources -- 587 using a conservative source detection threshold and 64 using a lower source detection threshold. These are presented as two separate catalogs. Of the 651 total sources, 561 are detected in the full 0.5--8.0 keV band, 529 in the soft 0.5--2.0 keV band, and 335 in the hard 2.0--8.0 keV band. For point sources near the aim point, the limiting fluxes are approximately $1.7 times 10^{-16}$ $rm{erg cm^{-2} s^{-1}}$ and $3.9 times 10^{-16}$ $rm{erg cm^{-2} s^{-1}}$ in the 0.5--2.0 keV and 2.0--8.0 keV bands, respectively. Using simulations, we determine the catalog completeness as a function of flux and assess uncertainties in the derived fluxes due to incomplete spectral information. We present the differential and cumulative flux distributions, which are in good agreement with the number counts from previous deep X-ray surveys and with the predictions from an AGN population synthesis model that can explain the X-ray background. In general, fainter sources have harder X-ray spectra, consistent with the hypothesis that these sources are mainly obscured AGN.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا