No Arabic abstract
We analyze the data of the gravitational microlensing survey carried out by by the MOA group during 2000 towards the Galactic Bulge (GB). Our observations are designed to detect efficiently high magnification events with faint source stars and short timescale events, by increasing the the sampling rate up to 6 times per night and using Difference Image Analysis (DIA). We detect 28 microlensing candidates in 12 GB fields corresponding to 16 deg^2. We use Monte Carlo simulations to estimate our microlensing event detection efficiency, where we construct the I-band extinction map of our GB fields in order to find dereddened magnitudes. We find a systematic bias and large uncertainty in the measured value of the timescale $t_{rm Eout}$ in our simulations. They are associated with blending and unresolved sources, and are allowed for in our measurements. We compute an optical depth tau = 2.59_{-0.64}^{+0.84} times 10^{-6} towards the GB for events with timescales 0.3<t_E<200 days. We consider disk-disk lensing, and obtain an optical depth tau_{bulge} = 3.36_{-0.81}^{+1.11} times 10^{-6}[0.77/(1-f_{disk})] for the bulge component assuming a 23% stellar contribution from disk stars. These observed optical depths are consistent with previous measurements by the MACHO and OGLE groups, and still higher than those predicted by existing Galactic models. We present the timescale distribution of the observed events, and find there are no significant short events of a few days, in spite of our high detection efficiency for short timescale events down to t_E = 0.3 days. We find that half of all our detected events have high magnification (>10). These events are useful for studies of extra-solar planets.
We present the microlensing optical depth towards the Galactic bulge based on the detection of 99 events found in our Difference Image Analysis (DIA) survey. This analysis encompasses three years of data, covering ~ 17 million stars in ~ 4 deg^2, to a source star baseline magnitude limit of V = 23. The DIA technique improves the quality of photometry in crowded fields, and allows us to detect more microlensing events with faint source stars. We find this method increases the number of detection events by 85% compared with the standard analysis technique. DIA light curves of the events are presented and the microlensing fit parameters are given. The total microlensing optical depth is estimated to be tau_(total)= 2.43^(+0.39/-0.38) x 10^(-6) averaged over 8 fields centered at l=2.68 and b=-3.35. For the bulge component we find tau_(bulge)=3.23^(+0.52/-0.50) x 10^(-6) assuming a 25% stellar contribution from disk sources. These optical depths are in good agreement with the past determinations of the MACHO Alcock et al. (1997) and OGLE Udalski et al. (1994) groups, and are higher than predicted by contemporary Galactic models. We show that our observed event timescale distribution is consistent with the distribution expected from normal mass stars, if we adopt the stellar mass function of Scalo (1986) as our lens mass function. However, we note that as there is still disagreement about the exact form of the stellar mass function, there is uncertainty in this conclusion. Based on our event timescale distribution we find no evidence for the existence of a large population of brown dwarfs in the direction of the Galactic bulge.
We describe observations carried out by the MOA group of the Galactic Bulge during 2000 that were designed to detect efficiently gravitational microlensing of faint stars in which the magnification is high and/or of short duration. These events are particularly useful for studies of extra-solar planets and faint stars. Approximately 17 degrees square were monitored at a sampling rate of up to 6 times per night. The images were analysed in real-time using a difference imaging technique. Twenty microlensing candidates were detected, of which 8 were alerted to the microlensing community whilst in progress. Approximately half of the candidates had high magnifications (>~10), at least one had very high magnification (>~50), and one exhibited a clear parallax effect. The details of these events are reported here, together with details of the on-line difference imaging technique. Some nova-like events were also observed and these are described, together with one asteroid.
We present observations of 8 Galactic Bulge microlensing events taken with the 1.0m JKT on La Palma during 2000 June and July. The JKT observing schedule was optimized using a prioritizing algorithm to automatically update the target list. For most of these events we have sampled the lightcurves at times where no information was available from the OGLE alert team. We assume a point-source point-lens (PSPL) model and perform a maximum likelihood fit to both our data and the OGLE data to constrain the event parameters of the fit. We then refit the data assuming a binary lens and proceed to calculate the probability of detecting planets with mass ratio $q=10^{-3}$. We have seen no clear signatures of planetary deviations on any of the 8 events and we quantify constraints on the presence of planetary companions to the lensing stars. For two well observed events, 2000BUL31 and 2000BUL33, our detection probabilities peak at $sim$30% and $sim$20% respectively for $q=10^{-3}$ and $a sim R_{E}$ for a $Deltachi^2$ threshold value of 60.
We present measurements of the microlensing optical depth and event rate toward the Galactic Bulge based on two years of the MOA-II survey. This sample contains ~1000 microlensing events, with an Einstein Radius crossing time of t_E < 200 days between -5 <l< 10 degree and -7 <b< -1 degree. Our event rate and optical depth analysis uses 474 events with well defined microlensing parameters. In the central fields with |l|< 5 degree, we find an event rates of Gamma = [2.39+/-1.1]e^{[0.60pm0.05](3-|b|)}x 10^{-5}/star/yr and an optical depth of tau_{200} = [2.35+/-0.18]e^{[0.51+/-0.07](3-|b|)}x 10^{-6} for the 427 events using all sources brighter than I_s = 20 mag centered at (l,b)=(0.38, -3.72). We find that the event rate is maximized at low latitudes and a longitude of $l~1 degree. For the 111 events in 3.2 deg^2 of the central Galactic Bulge at |b| < 3.0 degree and 0.0 < l < 2.0, centered at (l,b)=(0.97, -2.26), we find Gamma = 4.57_{-0.46}^{+0.51} x 10^{-5}/star/yr and tau_{200} = 3.64_{-0.45}^{+ 0.51} x 10^{-6}. We also consider a Red Clump Giant (RCG) star sample with I_s<17.5 mag. Our results are consistent with previous optical depth measurements. We find that the previously observed difference in optical depth measurements between all-source and RCG samples may be largely due to statistical fluctuations. These event rate measurements towards the central galactic bulge are necessary to predict the microlensing event rate and to optimize the survey fields in the future space mission such as WFIRST.
We present a new EROS-2 measurement of the microlensing optical depth toward the Galactic Bulge. Light curves of $5.6times 10^{6}$ clump-giant stars distributed over $66 deg^2$ of the Bulge were monitored during seven Bulge seasons. 120 events were found with apparent amplifications greater than 1.6 and Einstein radius crossing times in the range $5 {rm d}<t_e <400 {rm d}$. This is the largest existing sample of clump-giant events and the first to include northern Galactic fields. In the Galactic latitude range $1.4degr<|b|<7.0degr$, we find $tau/10^{-6}=(1.62 pm 0.23)exp[-a(|b|-3 {rm deg})]$ with $a=(0.43 pm0.16)deg^{-1}$. These results are in good agreement with our previous measurement, with recent measurements of the MACHO and OGLE-II groups, and with predictions of Bulge models.