Do you want to publish a course? Click here

Smooth potential chaos and N-body simulations

88   0   0.0 ( 0 )
 Added by Henry E. Kandrup
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Integrations in fixed N-body realisations of smooth density distributions corresponding to a chaotic galactic potential can be used to derive reliable estimates of the largest (finite time) Lyapunov exponent X_S associated with an orbit in the smooth potential generated from the same initial condition, even though the N-body orbit is typically characterised by an N-body exponent X_N >> X_S. This can be accomplished either by comparing initially nearby orbits in a single N-body system or by tracking orbits with the same initial condition evolved in two different N-body realisations of the same smooth density.



rate research

Read More

Using direct $N$-body simulations of self-gravitating systems we study the dependence of dynamical chaos on the system size $N$. We find that the $N$-body chaos quantified in terms of the largest Lyapunov exponent $Lambda_{rm max}$ decreases with $N$. The values of its inverse (the so-called Lyapunov time $t_lambda$) are found to be smaller than the two-body collisional relaxation time but larger than the typical violent relaxation time, thus suggesting the existence of another collective time scale connected to many-body chaos.
121 - M. Trenti 2008
Gravitational N-body simulations, that is numerical solutions of the equations of motions for N particles interacting gravitationally, are widely used tools in astrophysics, with applications from few body or solar system like systems all the way up to galactic and cosmological scales. In this article we present a summary review of the field highlighting the main methods for N-body simulations and the astrophysical context in which they are usually applied.
We revisit the r^{o}le of discreteness and chaos in the dynamics of self-gravitating systems by means of $N$-body simulations with active and frozen potentials, starting from spherically symmetric stationary states and considering the orbits of single particles in a frozen $N$-body potential as well as the orbits of the system in the full $6N$-dimensional phase space. We also consider the intermediate case where a test particle moves in the field generated by $N$ non-interacting particles, which in turn move in a static smooth potential. We investigate the dependence on $N$ and on the softening length of the largest Lyapunov exponent both of single particle orbits and of the full $N$-body system. For single orbits we also study the dependence on the angular momentum and on the energy. Our results confirm the expectation that orbital properties of single orbits in finite-$N$ systems approach those of orbits in smooth potentials in the continuum limit $N to infty$ and that the largest Lyapunov exponent of the full $N$-body system does decrease with $N$, for sufficiently large systems with finite softening length. However, single orbits in frozen models and active self-consistent models have different largest Lyapunov exponents and the $N$-dependence of the values in non-trivial, so that the use of frozen $N$-body potentials to gain information on large-$N$ systems or on the continuum limit may be misleading in certain cases.
Commercial graphics processors (GPUs) have high compute capacity at very low cost, which makes them attractive for general purpose scientific computing. In this paper we show how graphics processors can be used for N-body simulations to obtain improvements in performance over current generation CPUs. We have developed a highly optimized algorithm for performing the O(N^2) force calculations that constitute the major part of stellar and molecular dynamics simulations. In some of the calculations, we achieve sustained performance of nearly 100 GFlops on an ATI X1900XTX. The performance on GPUs is comparable to specialized processors such as GRAPE-6A and MDGRAPE-3, but at a fraction of the cost. Furthermore, the wide availability of GPUs has significant implications for cluster computing and distributed computing efforts like Folding@Home.
In the next decade, cosmological surveys will have the statistical power to detect the absolute neutrino mass scale. N-body simulations of large-scale structure formation play a central role in interpreting data from such surveys. Yet these simulations are Newtonian in nature. We provide a quantitative study of the limitations to treating neutrinos, implemented as N-body particles, in N-body codes, focusing on the error introduced by neglecting special relativistic effects. Special relativistic effects are potentially important due to the large thermal velocities of neutrino particles in the simulation box. We derive a self-consistent theory of linear perturbations in Newtonian and non-relativistic neutrinos and use this to demonstrate that N-body simulations overestimate the neutrino free-streaming scale, and cause errors in the matter power spectrum that depend on the initial redshift of the simulations. For $z_{i} lesssim 100$, and neutrino masses within the currently allowed range, this error is $lesssim 0.5%$, though represents an up to $sim 10%$ correction to the shape of the neutrino-induced suppression to the cold dark matter power spectrum. We argue that the simulations accurately model non-linear clustering of neutrinos so that the error is confined to linear scales.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا