Do you want to publish a course? Click here

Optical Spectropolarimetry of SN 2002ap: High Velocity Asymmetric Explosion

103   0   0.0 ( 0 )
 Added by Koji S. Kawabata
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present spectropolarimetry of the Type Ic supernova SN 2002ap and give a preliminary analysis: the data were taken at two epochs, close to and one month later than the visual maximum (2002 February 8). In addition we present June 9 spectropolarimetry without analysis. The data show the development of linear polarization. Distinct polarization profiles were seen only in the O I lambda 7773 multiplet/Ca II IR triplet absorption trough at maximum light and in the Ca II IR triplet absorption trough a month later, with the latter showing a peak polarization as high as ~2 %. The intrinsic polarization shows three clear position angles: 80 degs for the February continuum, 120 degs for the February line feature, and 150 degs for the March data. We conclude that there are multiple asymmetric components in the ejecta. We suggest that the supernova has a bulk asymmetry with an axial ratio projected on the sky that is different from 1 by of order 10 %. Furthermore, we suggest very speculatively that a high velocity ejecta component moving faster than ~0.115c (e.g., a jet) contributes to polarization in the February epoch.



rate research

Read More

We present the $UBVR_cI_c$ broad band optical photometry of the Type Ic supernova SN 2002ap obtained during 2002 February 06 -- March 23 in the early decline phases and also later on 2002 15 August. Combining these data with the published ones, the general light curve development is studied. The time and luminosity of the peak brightness and the peak width are estimated. There is a flattening in the optical light curve about 30 days after the $B$ maximum. The flux decline rates before flattening are 0.127$pm$0.005, 0.082$pm$0.001, 0.074$pm$0.001, 0.062$pm$0.001 and 0.040$pm$0.001 mag day$^{-1}$ in $U$, $B$, $V$, $R_c$ and $I_c$ passbands respectively, while the corresponding values after flattening are about 0.02 mag day$^{-1}$ in all the passbands. The maximum brightness of SN 2002ap $M_V = - 17.2$ mag, is comparable to that of the type Ic 1997ef, but fainter than that of the type Ic hypernova SN 1998bw. The peak luminosity indicates an ejection of $sim$ 0.06 M$_{odot}$ ${}^{56}$Ni mass. We also present low-resolution optical spectra obtained during the early phases. The SiII absorption minimum indicates that the photospheric velocity decreased from $sim$ 21,360 km s$^{-1}$ to $sim$ 10,740 km s$^{-1}$ during a period of $sim$ 6 days.
The supernova SN 2002ap was discovered in the outer regions of the nearby spiral M74 on January 29.4 UT. Early photometric and spectroscopic observations indicate the supernova belongs to the class of Ic hypernova. Late time (After JD 2452500) light curve decay slopes are similar to that of the hypernovae SN 1997ef and SN 1998bw. We present here the $BVRI$ photometric light curves and colour evolutions of SN 2002ap to investigate the late time nature of the light curve.
The spectral evolution of the peculiar SN Ic 2002ap during the first 40 days is presented. The spectra display very broad absorption features, which are typical of hypernovae. The maximum expansion velocity measured on the earliest spectra exceeds 3 times 10^4 km s^{-1}. The spectrum of SN 2002ap at the epoch of maximum brightness resembles that of SN 1997ef more than that of SN 1998bw. The spectral evolution of SN 2002ap proceeds at about 1.5 times the rate of SN 1997ef. The parameterized supernova spectrum synthesis code SYNOW was used to perform line identification and deduce velocity information from the early-phase spectra, which are heavily affected by line blending. The photospheric velocity, as deduced from the fitting results and from the blueshift of the ion{Si}{2} lambda 6355 absorption minimum, is lower than in previously studied hypernovae. At advanced epochs, the ion{Si}{2} lambda 6355 absorption minimum becomes difficult to distinguish. This may be caused by the growth of [ion{O}{1}] lambda lambda 6300, 6364 emission. Together with the rapid spectral evolution, this suggests that SN 2002ap should enter the nebular phase sooner than previously studied hypernovae.
Photometric and spectroscopic data of the energetic Type Ic supernova (SN) 2002ap are presented, and the properties of the SN are investigated through models of its spectral evolution and its light curve. The SN is spectroscopically similar to the hypernova SN 1997ef. However, its kinetic energy [$sim (4-10) times 10^{51}$ erg] and the mass ejected (2.5-5 $M_{odot}$) are smaller, resulting in a faster-evolving light curve. The SN synthesized $sim 0.07 M_{odot}$ of $^{56}$Ni, and its peak luminosity was similar to that of normal SNe. Brightness alone should not be used to define a hypernova, whose defining character, namely very broad spectral features, is the result of a high kinetic energy. The likely main-sequence mass of the progenitor star was 20-25 $M_{odot}$, which is also lower than that of both hypernovae SNe 1997ef and 1998bw. SN 2002ap appears to lie at the low-energy and low-mass end of the hypernova sequence as it is known so far. Observations of the nebular spectrum, which is expected to dominate by summer 2002, are necessary to confirm these values.
We present seven epochs of spectropolarimetry of the Type IIb supernova (SN) 2011dh in M51, spanning 86 days of its evolution. The first epoch was obtained 9 days after the explosion, when the photosphere was still in the depleted hydrogen layer of the stripped-envelope progenitor. Continuum polarization is securely detected at the level of P~0.5% through day 14 and appears to diminish by day 30, which is different from the prevailing trends suggested by studies of other core-collapse SNe. Time-variable modulations in P and position angle are detected across P-Cygni line features. H-alpha and HeI polarization peak after 30 days and exhibit position angles roughly aligned with the earlier continuum, while OI and CaII appear to be geometrically distinct. We discuss several possibilities to explain the evolution of the continuum and line polarization, including the potential effects of a tidally deformed progenitor star, aspherical radioactive heating by fast-rising plumes of Ni-56 from the core, oblique shock breakout, or scattering by circumstellar material. While these possibilities are plausible and guided by theoretical expectations, they are not unique solutions to the data. The construction of more detailed hydrodynamic and radiative-transfer models that incorporate complex aspherical geometries will be required to further elucidate the nature of the polarized radiation from SN 2011dh and other Type IIb supernovae.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا