The Axially Symmetric Ejecta of Supernova 1987A


Abstract in English

Extensive early observations proved that the ejecta of supernova 1987A (SN 1987A) are aspherical. Fifteen years after the supernova explosion, the Hubble Space Telescope has resolved the rapidly expanding ejecta. The late-time images and spectroscopy provide a geometrical picture that is consistent with early observations and suggests a highly structured, axially symmetric geometry. We present here a new synthesis of the old and new data. We show that the Bochum event, presumably a clump of $^{56}$Ni, and the late-time image, the locus of excitation by $^{44}$Ti, are most naturally accounted for by sharing a common position angle of about 14degree, the same as the mystery spot and early speckle data on the ejecta, and that they are both oriented along the axis of the inner circumstellar ring at 45degree to the plane of the sky. We also demonstrate that the polarization represents a prolate geometry with the same position angle and axis as the early speckle data and the late-time image and hence that the geometry has been fixed in time and throughout the ejecta. The Bochum event and the Doppler kinematics of the [Ca II]/[O II] emission in spatially resolved HST spectra of the ejecta can be consistently integrated into this geometry. The radioactive clump is deduced to fall approximately along the axis of the inner circumstellar ring and therefore to be redshifted in the North whereas the [Ca II]/[O II] 7300 AA emission is redshifted in the South. We present a jet-induced model for the explosion and argue that such a model can account for many of the observed asymmetries. In the jet models, the oxygen and calcium are not expected to be distributed along the jet, but primarily in an expanding torus that shares the plane and northern blue shift of the inner circumstellar ring.

Download