Do you want to publish a course? Click here

The metallicities of UM151, UM408 and A1228+12 revisited

44   0   0.0 ( 0 )
 Added by Alexander Pramsky
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of new spectrophotometry and heavy element abundance determinations for 3 dwarf galaxies UM151, UM408 and A1228+12 (RMB132). These galaxies have been claimed in the literature to have very low metallicities, corresponding to log(O/H)+12 < 7.65, that are in the metallicity range of some candidate local young galaxies. We present higher S/N data for these three galaxies. UM151 and UM408 have significantly larger metallicities: log(O/H)+12 = 8.5 and 7.93, respectively. For A1228+12 our new log(O/H)+12 = 7.73 is close to that recalculated from earlier data (7.68). Thus, the rederived metallicities allow us to remove these objects from the list of galaxies with Z < 1/20 Z_Sun.



rate research

Read More

We have reviewed the current status of the inclusive neutrino scattering from $^{12}$C in the low energy region corresponding to the neutrino beams from the pion, muon and kaon decaying at rest. The theoretical calculations of total cross sections in various nuclear models with special emphasis on the recent experiments with the monoenergetic neutrinos from KDAR [1] along with the older experiments from KARMEN and LSND collaborations have been discussed in the context of the recent works by Akbar et al. [2] and Nikolakopoulos et al. [3]. The inadequacy of the various theoretical models used to explain the experimental results on the inclusive neutrino scattering from nuclei at low energies has been highlighted and the need for a better understanding of the nuclear medium effects beyond the impulse approximation has been emphasized.
58 - Daniel A. Dale 1997
We present first results of an all-sky observing program designed to improve the quality of the I band Tully-Fisher (TF) template and to obtain the reflex motion of the Local Group with respect to clusters to z = 0.06. We are obtaining between 5 and 15 TF measurements per cluster on a sample of 50 clusters at intermediate redshifts (0.02 < z < 0.06). Presentation of the data for seven Abell clusters of galaxies is given here. This data incorporates methods for estimating the true inclination of a spiral disk, an observational parameter undervalued for small angular-sized galaxies or for galaxies observed in poor seeing conditions.
We present post process neutron capture computations for Asymptotic Giant Branch stars of 1.5 to 3 Mo and metallicities -1.3 to 0.1. The reference stellar models are computed with the FRANEC code, using the Schwarzschilds criterion for convection. Motivations for this choice are outlined. We assume that MHD processes induce the penetration of protons below the convective boundary, when the third dredge up occurs. There, the 13C(alpha,n)16O neutron source can subsequently operate, merging its effects with those of the 22Ne(alpha,n)25Mg reaction, activated at the temperature peaks characterizing AGB stages. This work has three main scopes. i) We provide a grid of abundance yields, as produced through our MHD mixing scheme, uniformly sampled in mass and metallicity. From it, we deduce that the solar s process distribution, as well as the abundances in recent stellar populations, can be accounted for, without the need of the extra primary like contributions suggested in the past. ii) We formulate analytical expressions for the mass of the 13C pockets generated, in order to allow easy verification of our findings. iii) We compare our results with observations of evolved stars and with isotopic ratios in presolar SiC grains, also noticing how some flux tubes should survive turbulent disruption, carrying C rich materials into the winds even when the envelope is O rich. This wind phase is approximated through the G component of AGB s processing. We conclude that MHD induced mixing is adequate to drive slow neutron capture phenomena accounting for observations. Our prescriptions should permit its inclusion into current stellar evolutionary codes.
Dwarf galaxies are generally faint. To derive their age and metallicity distributions, it is critical to optimize the use of any collected photon. Koleva et al., using full spectrum fitting, have found strong population gradients in some dwarf elliptical galaxies. Here, we show that the population profiles derived with this method are consistent and more precise than those obtained with spectrophotometric indices. This allows studying fainter objects in less telescope time.
120 - Subo Dong 2013
We use 12000 stars from Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) spectroscopic data to show that the metallicities of Kepler field stars as given in the Kepler Input Catalog (KIC) systematically underestimate both the true metallicity and the dynamic range of the Kepler sample. Specifically, to the first order approximation, we find [Fe/H]_KIC = -0.20 + 0.43 [Fe/H]_LAMOST, with a scatter of ~0.25 dex, due almost entirely to errors in KIC. This relation is most secure for -0.3<[Fe/H]_LAMOST<+0.4 where we have >200 comparison stars per 0.1 dex bin and good consistency is shown between metallicities determined by LAMOST and high-resolution spectra. It remains approximately valid in a slightly broader range. When the relation is inverted, the error in true metallicity as derived from KIC is (0.25 dex)/0.43~0.6 dex. We thereby quantitatively confirm the cautionary note by Brown et al. (2011) that KIC estimates of [Fe/H] should not be used by anyone with a particular interest in stellar metallicities. Fortunately, many more LAMOST spectroscopic metallicities will be available in the near future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا